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(R20A6610)DEEPLEARNING 
COURSEOBJECTIVES: 

1. To understand the basic concepts and techniques of Deep Learning and the need of 

Deep Learningtechniques in real-world problems 

2. TounderstandCNNalgorithmsandthewaytoevaluateperformanceofthe CNN 

architectures. 

3. ToapplyRNNandLSTMtolearn,predictandclassifythereal-worldproblems in 

theparadigmsofDeepLearning. 

4. Tounderstand,learnanddesignGANsfortheselectedproblems. 

5. TounderstandtheconceptofAuto-encodersandenhancingGANsusingauto-encoders. 

 

UNIT-I: 
INTRODUCTIONTODEEPLEARNING:HistoricalTrendsinDeepLearning,Why 

DL is Growing, Artificial Neural Network, Non-linear classification example using 

Neural Networks: XOR/XNOR, Single/Multiple Layer Perceptron, Feed Forward 

Network, Deep Feed- forward networks, Stochastic Gradient –Based learning, Hidden 

Units, Architecture Design, Back- Propagation. 

UNIT-II: 

CONVOLUTION NEURAL NETWORK (CNN): Introduction to CNNs and their 

applications in computer vision, CNN basic architecture, Activation functions-sigmoid, 

tanh, ReLU, Softmax layer, Types of pooling layers, Training of CNN in TensorFlow, 

various popular CNN architectures: VGG, Google Net, ResNet etc, Dropout, 

Normalization, Data augmentation 

UNIT-III 

RECURRENT NEURAL NETWORK (RNN): Introduction to RNNs and their 

applications in sequential data analysis, Back propagation through time (BPTT), 

Vanishing Gradient Problem, gradient clipping Long Short Term Memory (LSTM) 

Networks, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs. 

UNIT-IV 

GENERATIVE ADVERSARIAL NETWORKS (GANS): Generative models, Concept 

and principles of GANs, Architecture of GANs (generator and discriminator networks), 

Comparison between discriminative and generative models, Generative Adversarial 

Networks (GANs), Applications of GANs. 

UNIT-V 
AUTO-ENCODERS: Auto-encoders, Architecture and components of auto-encoders 

(encoder and decoder), Training an auto-encoder for data compression and 

reconstruction, Relationship between Autoencoders and GANs, Hybrid Models: 

Encoder-Decoder GANs. 



TEXTBOOKS: 
1. DeepLearning:AnMITPressBookbyIanGoodfellowandYoshuaBengioAaron 

Courville. 

2. MichaelNielson,NeuralNetworksandDeepLearning,DeterminationPress,2015. 

3. SatishKumar,Neuralnetworks:AclassroomApproach,TataMcGraw-HillEducation, 

2004. 

REFERENCES: 
1. DeepLearningwithPython,FrancoisChollet,Manningpublications,2018 

2. Advanced Deep Learning with Keras, Rowel Atienza, PACKT Publications, 

2018 

COURSEOUTCOMES: 
 

CO1:UnderstandthebasicconceptsandtechniquesofDeepLearningandthe 

needofDeepLearningtechniquesinreal-worldproblems. 

CO2:UnderstandCNNalgorithmsandthewaytoevaluateperformanceof  

theCNNarchitectures. 

CO3:ApplyRNNandLSTMtolearn,predictandclassifythereal-world 

problemsintheparadigmsofDeepLearning. 

CO4:Understand,learnanddesignGANsfortheselectedproblems. 

CO5:UnderstandtheconceptofAuto-encodersandenhancingGANsusingauto- 

encoders. 
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UNIT-I: 
INTRODUCTIONTODEEPLEARNING:HistoricalTrendsin 

Deep Learning, Why DL is Growing, Artificial Neural Network,Non-

linear classification example using Neural Networks: XOR/XNOR, 

Single/Multiple Layer Perceptron, Feed Forward Network, Deep 

Feed- forward networks, Stochastic Gradient –Based learning, 

Hidden Units, Architecture Design, Back- Propagation, Deep learning 

frameworks and libraries (e.g., TensorFlow/Keras, PyTorch). 

INTRODUCTIONTODEEPLEARNING: 

Deep learning is a branch of machine learning which is based on artificial neural 
networks. It is capable of learning complex patterns and relationships within data. In deep 
learning, we don’t need to explicitly program everything. It has become increasinglypopular 
in recent years due to the advances in processing power and the availability oflarge 
datasets. Because it is based on artificial neural networks (ANNs) also known as deep neural 
networks (DNNs). These neural networks are inspired by the structure and 
functionofthehumanbrain’s biologicalneurons,andtheyaredesignedtolearnfromlarge 
amounts of data. 

1. Deep Learning is a subfield of Machine Learning that involves the use of neural 
networks to model and solve complex problems. Neural networks are modeled 
after the structure and function of the human brain and consist of layers of 
interconnected nodes that process and transform data. 

2. The key characteristic of Deep Learning is the use of deep neural networks,which 
have multiple layers of interconnected nodes. These networks can learn complex 
representations of data by discovering hierarchical patterns andfeatures in the 
data. Deep Learning algorithms can automatically learn and improve from data 
without the need for manual feature engineering. 

3. Deep Learning has achieved significant success in various fields, including image 
recognition, natural language processing, speech recognition, and 
recommendation systems. Some of the popular Deep Learning architectures 
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), and Deep Belief Networks (DBNs). 

4. Training deep neural networks typically requires a large amount of data and 
computational resources. However, the availability of cloud computing and the 
developmentofspecializedhardware,suchasGraphicsProcessingUnits (GPUs), has 
made it easier to train deep neural networks. 

 
In summary, Deep Learning is a subfield of Machine Learning that involves the useof 

deep neural networks to model and solve complex problems. Deep Learning 
hasachievedsignificantsuccessinvariousfields,anditsuseisexpectedtocontinuetogrow as more 
data becomes available, and more powerful computing resources becomeavailable. 
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WhatisDeepLearning? 

Deep learning is the branch of “ Machine Learning ”which is based on artificial neural 
network architecture. An artificial neural network or ANN uses layers of interconnected 
nodes called neurons that work together to process and learn from theinput data. 

In a fully connected Deep neural network, there is an input layer and one or more 
hiddenlayersconnectedoneaftertheother.Eachneuronreceivesinputfromthe previous layer 
neurons or the input layer. The output of one neuron becomes the input to other neurons in 
the next layer of the network, and this process continues until the final layer produces the 
output of the network. The layers of the neural network transform the input data through a 
series of nonlinear transformations, allowing the network to learn complex representations 
of the input data. 

 

 

 

https://www.geeksforgeeks.org/machine-learning/
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Today, Deep learning has become one of the most popular and visible areas of 
machine learning, due to its success in a variety of applications, such as computer vision, 
natural language processing, and Reinforcement learning. 

Deep learning can be used for supervised, unsupervised as well as reinforcement 
machine learning. it uses a variety of ways to process these. 

• Supervised Machine Learning: Supervised machine learning is the 
machinelearning technique in which the neural network learns to make 
predictions or classify data based on the labeled datasets. Here we input both 
input features along with the target variables. the neural network learns to make 
predictions based on the cost or error that comes from the difference between 
thepredictedandtheactualtarget,thisprocessisknownasbackpropagation. Deep 
learning algorithms like Convolutional neural networks, Recurrent neural 
networks are used for many supervised tasks like image classifications and 
recognition, sentiment analysis, language translations, etc. 

• UnsupervisedMachineLearning: Unsupervisedmachinelearning is the machine 
learning technique in which the neural network learns to discover the patterns or 
to cluster the dataset based on unlabeled datasets. Here thereare no target 
variables. while the machine has to self-determined the hidden patterns or 
relationships within the datasets. Deep learning algorithms like autoencoders 
and generative models are used for unsupervised tasks like clustering, 
dimensionality reduction, and anomaly detection. 

• ReinforcementMachineLearning: ReinforcementMachineLearning is the 
machinelearning techniqueinwhichanagentlearnstomakedecisionsin an 
environment to maximize a reward signal. The agent interacts with the 
environment by taking action and observing the resulting rewards. Deeplearning 
can be used to learn policies, or a set of actions, that maximizes the 
cumulativerewardovertime.Deepreinforcementlearningalgorithmslike Deep Q 
networks and Deep Deterministic Policy Gradient (DDPG) are used to reinforce 
tasks like robotics and game playing etc. 

Artificialneuralnetworks: 
“Artificialneuralnetworks” arebuiltontheprinciplesofthestructureand 

operationofhumanneurons. Itis alsoknown as neural networks or neural nets. An artificial 
neural network’s input layer, which is the first layer, receives input from external sources 
and passes it on to the hidden layer, which is the second layer. Each neuron in the hidden 
layer gets information from the neurons in the previous layer, computes the 
weightedtotal,andthentransfersit tothe neuronsinthe nextlayer.Theseconnections are 
weighted, which means that the impacts of the inputs from the preceding layer aremore or 
less optimized by giving each input a distinct weight. These weights are then adjusted during 
the training process to enhance the performance of the model. 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
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FullyConnectedArtificialNeuralNetwork 

 

Artificial neurons, also known as units, are found in artificial neural networks. The 
wholeArtificialNeuralNetwork iscomposed oftheseartificialneurons,whichare arranged in a 
series of layers. The complexities of neural networks will depend on the complexities of the 
underlying patterns in the dataset whether a layer has a dozen units or millions of 
units.Commonly, Artificial Neural Network has an inputlayer,anoutputlayer as well as 
hidden layers. The input layer receives data from the outside world which the neural 
network needs to analyze or learn about. 

Ina fullyconnectedartificialneural network,thereis aninputlayerandone or more 
hidden layers connected one after the other. Each neuron receives input from the previous 
layer neurons or the input layer. The output of one neuron becomes the input to other 
neurons in the next layer of the network, and this process continues until the final layer 
produces the output of the network. Then, after passing through one or more hidden layers, 
this data is transformed into valuable data for the output layer. Finally, the output layer 
provides an output in the form of an artificial neural network’s response to the data that 
comes in. 

Units are linked to one another from one layer to another in the bulk of neural 
networks. Each of these links has weights that control how much one-unit influences 
another. The neural network learns more and more about the data as it moves from oneunit 
to another, ultimately producing an output from the output layer. 

DifferencebetweenMachineLearningandDeepLearning: 

Machine learningand deep learning both are subsets of artificial intelligence but 
there are many similarities and differences between them. 

https://www.geeksforgeeks.org/machine-learning/
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Machine Learning Deep Learning 

Apply statistical algorithms to learn the 

hidden patterns and relationships in the 

dataset. 

Uses artificial neural networkarchitecture 

to learn the hidden patterns and 

relationships in the dataset. 

 
Canworkonthesmalleramountof dataset 

Requiresthelargervolumeofdataset 

compared to machine learning 

 
Betterforthelow-label task. 

Better for complex task like image 

processing, natural language processing, 

etc. 

Takeslesstimetotrainthemodel. Takesmoretimetotrainthe model. 

A model is created by relevant features 

which are manually extracted from images 

to detect an object in the image. 

Relevant features are automatically 

extracted from images. It is an end-to- 

end learning process. 

 
Lesscomplexandeasytointerprettheresult. 

 
Morecomplex,itworksliketheblackbox 

interpretationsoftheresultarenoteasy. 

It can work on the CPU or requires less 

computingpowerascomparedtodeep 

learning. 

 
Itrequiresahigh-performancecomputer 

with GPU. 

 
Typesofneuralnetworks: 

 
DeepLearningmodelsareabletoautomaticallylearnfeaturesfromthedata, 

whichmakesthemwell-suitedfortaskssuchasimagerecognition,speechrecognition, 
andnaturallanguageprocessing.Themostwidelyusedarchitecturesindeeplearningare 
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feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural 
networks (RNNs). 

Feedforward neural networks (FNNs)are the simplest type of ANN, with a linear flow of 
information through the network. FNNs have been widely used for tasks such as image 
classification, speech recognition, and natural language processing. 

Convolutional Neural Networks (CNNs)are specifically for image and video recognitiontasks. 
CNNs are able to automatically learn features from the images, which makes them well-
suitedfortaskssuchasimageclassification,objectdetection,andimage segmentation. 
Recurrent Neural Networks (RNNs)are a type of neural network that is able to process 
sequential data, such as time series and natural language. RNNs are able to maintain an 
internalstatethatcapturesinformationaboutthepreviousinputs,whichmakesthem well-
suitedfortaskssuchasspeechrecognition,naturallanguageprocessing,and language 
translation. 

ApplicationsofDeepLearning: 

The main applications of deep learning can be divided into computer vision, natural 
language processing (NLP), and reinforcement learning. 

 

Computervision 

In computer vision, Deep learning models can enable machines to identify and 
understand visual data. Some of the main applications of deep learning in computer vision 
include: 

• Object detection and recognition: Deep learning model can be used to identify 
and locate objects within images and videos, making it possible for machines to 
perform tasks such as self-driving cars, surveillance, and robotics. 

• Image classification: Deep learning models can be used to classify images into 
categories such as animals, plants, and buildings. This is used in applicationssuch 
as medical imaging, quality control, and image retrieval. 

https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
https://www.geeksforgeeks.org/applications-of-computer-vision/
https://www.geeksforgeeks.org/applications-of-computer-vision/
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• Imagesegmentation: Deeplearningmodelscanbeusedforimage segmentation into 
different regions, making it possible to identify specific features within images. 

Naturallanguageprocessing(NLP): 

In NLP, the Deep learning model can enable machines to understand and generate 
human language. Some of the main applications of deep learning inNLPinclude: 

• Automatic Text Generation – Deep learning model can learn the corpus of text 
andnewtextlikesummaries,essayscanbeautomaticallygeneratedusing these 
trained models. 

• Language translation: Deep learning models can translate text from one 
language to another, making it possible to communicate with people from 
different linguistic backgrounds. 

• Sentiment analysis: Deep learning models can analyze the sentiment of a piece 
oftext,makingitpossibletodeterminewhetherthetextispositive,negative, or 
neutral. This is used in applications such as customer service, social media 
monitoring, and political analysis. 

• Speech recognition: Deep learning models can recognize and transcribe spoken 
words, making it possible to perform tasks such as speech-to-text conversion, 
voice search, and voice-controlled devices. 

Reinforcementlearning: 

In reinforcement learning, deep learning works as training agents to take action inan 
environment to maximize a reward. Some of the main applications of deep learning in 
reinforcement learning include: 

• Game playing: Deep reinforcement learning models have been able to beat 
human experts at games such as Go, Chess, and Atari. 

• Robotics: Deep reinforcement learning models can be used to train robots to 
perform complex tasks such as grasping objects, navigation, and manipulation. 

• Control systems: Deep reinforcement learning models can be used to control 
complex systems such as power grids, traffic management, and supply chain 
optimization. 

PopularspecificapplicationsofDL: 

 

 

 

 

 

 

 

 

ChallengesinDeepLearning: 

Deep learning has made significant advancements in various fields, but there are still 

some challenges that need to be addressed. Here are some of the main challenges in 

deep learning: 

1.Data availability: It requires large amounts of data to learn from. For using deep 
learning it’s a big concern to gather as much data for training. 

https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
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2. Computational Resources: For training the deep learning model, it is 
computationally expensive because it requires specialized hardware like GPUs 
and TPUs. 

3. Time-consuming: While working on sequential data depending on the 
computational resource it can take very large even in days or months. 

4. Interpretability:Deeplearningmodelsarecomplex,itworkslikeablack box.it is very 
difficult to interpret the result. 

5. Overfitting: when the model is trained again and again, it becomes too 
specializedforthetrainingdata,leadingtooverfittingandpoorperformance on new 
data. 

 

AdvantagesofDeepLearning: 

 
1. High accuracy: Deep Learning algorithms can achieve state-of-the-art 

performance in various tasks, such as image recognition and natural language 
processing. 

2. Automated feature engineering: Deep Learning algorithms can automatically 
discover and learn relevant features from data without the need for manual 
feature engineering. 

3. Scalability: Deep Learning models can scale to handle large and complexdatasets, 
and can learn from massive amounts of data. 

4. Flexibility: DeepLearning models can be appliedto a wide range of tasks andcan 
handle various types of data, such as images, text, and speech. 

5. Continual improvement: Deep Learning models can continually improve their 
performance as more data becomes available. 

 

DisadvantagesofDeepLearning: 

 
1. Highcomputationalrequirements:DeepLearningmodelsrequirelarge amounts of 

data and computational resources to train and optimize. 
2. Requires large amounts of labeled data: Deep Learning models often require a 

large amount of labeled data for training, which can be expensive and time- 
consuming to acquire. 

3. Interpretability:DeepLearningmodelscanbechallengingtointerpret,making 
itdifficulttounderstandhowtheymakedecisions. Overfitting: Deep Learning 
models can sometimes overfit to the training data, resulting in poor performance 
on new and unseen data. 

4. Black-box nature: Deep Learning models are often treated as black boxes,making 
it difficult to understand how they work and how they arrived at their 
predictions. 

In summary, while Deep Learning offers many advantages,including 
high accuracy and scalability, it also has some disadvantages, such as high 
computational requirements, the need for large amounts of labeled data, 
andinterpretabilitychallenges.Theselimitationsneedtobecarefully considered 
when deciding whether to use Deep Learning for a specific task. 
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HistoricalTrendsinDeepLearning: 

Deep learning has experienced significant historical trends since its 

inception. Here are some key milestones and trends that have 

shaped the field: 

1. Early Developments: Deep learning traces its roots back to 
the 1960s with the development of Artificial Neural Networks 
(ANNs). 

• The idea of using interconnected nodes inspired by the human 
brain's structure laid the foundation for later deep learning 
advancements. 

2. WinterofAI:Inthe1970sand1980s,deeplearningfacedaperiodofstagnation known 

as the "AI winter." 

• Limited computational power, insufficient data, and theoretical 
challenges hindered progress in the field, leading to decreased 
interest and funding. 

 

3. Backpropagation: In the 1980s, the backpropagation algorithm, 
which efficiently trains deep neural networks, was rediscovered and 
popularized. 

• This breakthrough allowed for more efficient training of 
multi-layer neural networks, addressing some of the 
limitations faced during the AI winter. 

 

4. Rise of Convolutional Neural Networks (CNNs): In the late 1990s and 
early 2000s, CNNs gained prominence in the fieldof computer vision. 

• TheLeNet-5architecturedevelopedbyYannLeCunrevolutionized 
image recognition tasks and demonstrated the potential of deep 
learning in visual perception. 

 

5. BigDataandGPUs:Theearly2010smarkedaturningpointfor 
deeplearningwiththeadventofbigdataandtheavailabilityofpowerful 
Graphics Processing Units (GPUs). 

• Theabundanceoflabeleddata,combinedwithGPUacceleration, 
enabled the training of large-scale deep neuralnetworks and 
significantly improved performance. 

6. ImageNetandDeepLearningRenaissance:TheImageNetLargeScale 
VisualRecognitionChallengein2012,wonbyadeepneuralnetworkknown as 
AlexNet, brought deep learning into the spotlight. 

• This event sparked a renaissance in the field, encouraging 
researcherstoexploredeeplearningarchitecturesandtechniques 
across various domains. 

 

7. DeepLearninginNaturalLanguageProcessing(NLP):Deeplearning 
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techniques, particularly recurrent neural networks(RNNs) and later transformer 
models, have made substantial advancements in NLP tasks. 

• Models like LSTM (Long Short-Term Memory) and BERT 
(Bidirectional Encoder Representations from Transformers) have 
achieved state-of-the-art results in tasks like machine translation, 
sentiment analysis, and question answering. 

 

8. Generative Models: The introduction of generative models like 
Variational Autoencoders (VAEs) and Generative Adversarial 
Networks (GANs) opened up possibilities for generating realistic 
images, videos, and audio. 

• GANs,inparticular,havedemonstratedimpressivecapabilitiesin 

generating synthetic data. 

 
9. TransferLearning andPretraining: Transferlearninghas become a 
prevalent technique in deep learning, enabling models to leverage 
knowledge from pretraining on large datasets and then fine-tune on 
specific tasks. 

• Thisapproachhasledtosignificantperformanceimprovementsand 
reduced training time, especially in scenarioswith limited labeled 
data. 

 

10. ExplainabilityandInterpretability:Asdeeplearningmodels 
have become increasingly complex, researchers havefocused on 
improving their explainability and interpretability. 

• Techniques like attention mechanisms, saliency maps, and 
model-agnosticinterpretabilitymethodsaimtoshedlightonthe 
decision-making processes of deep learning models. 

Why DLisGrowing: 

• ProcessingpowerneededforDeeplearningisreadilybecomingavailable using 

GPUs, Distributed Computing and powerful CPUs. 

• Moreover,asthedataamountgrows,DeepLearningmodelsseemto outperform 

Machine Learning models. 

• Focusoncustomizationandrealtime decision. 

• Uncover patterns that is hard to detect using traditional techniques. Find latent 

features (super variables) without significant manual feature engineering. 
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Processin ML/DL: 
 

ArtificialNeuralNetworks: 

 
Artificial Neural Networks contain artificial neurons which are called units. These 

units are arranged in a series of layers that together constitute the whole Artificial Neural 

Network in a system. 

 

A layer can have only a dozen units or millions of units as this depends on how the 

complex neural networks will be required to learn the hidden patterns in the dataset. 

Commonly, Artificial Neural Network has an input layer, an output layer as well as hidden 

layers. 

 

The input layer receives data from the outside world which the neural network needs 

to analyze or learn about. Then this data passes through one or multiple hidden layers that 

transform the input into data that is valuable for the output layer. Finally, the output layer 

provides an output in the form of a response of the Artificial Neural Networks to input data 

provided. 

 

In the majority of neural networks, units are interconnected from one layer toanother. 

Each of these connections has weights that determine the influence of one unit on another 

unit. As the data transfers from one unit to another, the neural network learns more and more 

about the data which eventually results in an output from the output layer. 
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Thestructuresandoperationsofhumanneuronsserveasthebasisforartificial neural 

networks. It is also known as neural networks or neural nets. The input layer of an artificial 

neural network is the first layer, and it receives input from external sources and releases it to 

the hidden layer, which is the second layer. In the hidden layer, each neuron receives input 

from the previous layer neurons, computes the weighted sum, and sends it to the neurons in 

the next layer. 

These connections are weighted means effects of the inputs from the previous layer 

are optimized more or less by assigning different-different weights to each input and it is 

adjusted during the training process by optimizing these weights for improved model 

performance. 

ArtificialneuronsvsBiologicalneurons 

The concept of artificial neural networks comes from biological neurons found in 

animal brains So they share a lot of similarities in structure and function wise. 

• Structure: The structure of artificial neural networks is inspired by biological 

neurons. A biological neuron has a cell body or soma to process the impulses, 

dendrites to receive them, and an axon that transfers them to other neurons.The 

input nodes of artificial neural networks receive input signals, the hidden layer 

nodes compute these input signals, and the output layer nodes compute the final 

output by processing the hidden layer’s results using activation functions. 

BiologicalNeuron ArtificialNeuron 

Dendrite Inputs 
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BiologicalNeuron ArtificialNeuron 

CellnucleusorSoma Nodes 

Synapses Weights 

Axon Output 

• Synapses: Synapses are the links between biological neurons that enable the 

transmission of impulses from dendrites to the cell body. Synapses are 

theweightsthatjointheone-layernodestothenext-layernodesinartificial neurons. The 

strength of the links is determined by the weight value. 

• Learning: In biological neurons, learning happens in the cell body nucleus or 

soma,whichhasanucleusthathelpstoprocesstheimpulses.Anaction potential is 

produced and travels through the axons if the impulses are powerful enough to 

reach the threshold. This becomes possible by synaptic plasticity,which represents 

the ability of synapses to become stronger or weaker over timein reaction to 

changes in their activity. In artificial neural networks, backpropagation is a 

technique used for learning, which adjusts the weights 

betweennodesaccordingtotheerror ordifferences betweenpredictedand actual 

outcomes. 

BiologicalNeuron ArtificialNeuron 

Synapticplasticity Backpropagations 

• Activation:Inbiologicalneurons,activationisthe firing rate oftheneuron which 

happens when the impulses are strong enough to reach the threshold. In artificial 

neural networks, A mathematical function known as an activation function maps 

the input to the output, and executes activations. 
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HowdoArtificialNeuralNetworkslearn? 

 

Artificial neural networks are trained using a training set. For example, suppose you 

want to teach an ANN to recognize a cat. Then it is shown thousands of different images of 

catssothatthenetworkcanlearntoidentifyacat.Oncetheneuralnetworkhasbeen trained enough 

using images of cats, then you need to check if it can identify cat images correctly. This is 

done by making the ANN classify the images it is provided by deciding whether they are cat 

images or not.The output obtained by the ANN is corroborated by a human-provided 

description of whether the image is a cat image or not. 

If the ANN identifies incorrectly then back-propagation is used to adjust whatever it 

has learned during training. Backpropagationis done by fine-tuning the weights of the 

connections in ANN units based on the error rate obtained. This process continues until the 

artificial neural network can correctly recognize a cat in an image with minimal possibleerror 

rates. 

 

WhatarethetypesofArtificialNeuralNetworks? 

 
• Feedforward Neural Network: The feedforward neural network is one of the 

most basic artificial neural networks. In this ANN, the data or the input provided 

travels in a single direction. It enters into the ANN through the input layer and 

exits through the output layer while hidden layers may or may not exist. So, the 

feedforward neural network has a front-propagated wave only and usually doesnot 

have backpropagation. 

• Convolutional Neural Network: A Convolutional neural network has some 

similarities to the feed-forward neural network, where the connections between 

units have weights that determine the influence of one unit on another unit. But a 

CNN has one or more than one convolutional layer that uses a convolution 

operationontheinputandthenpassestheresultobtainedintheformofoutput to the next 

layer. CNN has applications in speech and image processing which is particularly 

useful in computer vision. 

• Modular Neural Network:A Modular Neural Network contains a collection of 

different neural networks that work independently towards obtaining the output 

withnointeractionbetweenthem.Eachofthedifferentneuralnetworks 

https://www.geeksforgeeks.org/deep-neural-net-with-forward-and-back-propagation-from-scratch-python/
https://www.geeksforgeeks.org/backpropagation-in-data-mining/
https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/


B.Tech–CSE R-20 

DeepLearning 

 

 

performs a different sub-task by obtaining unique inputs compared to other 

networks. The advantage of this modular neural network is that it breaks down a 

large and complex computational process into smaller components, thus 

decreasing its complexity while still obtaining the required output. 

• Radial basis function Neural Network:Radial basis functions are those 

functions that consider the distance of a point concerning the center. RBF 

functions have two layers.In the first layer, the input is mapped into all theRadial 

basis functions in the hidden layer and then the output layer computes the output 

in the next step. Radial basis function nets are normally used to model the data 

that represents any underlying trend or function. 

• Recurrent Neural Network:The Recurrent Neural Network saves the output 

ofalayerandfeedsthisoutputbacktotheinputtobetterpredicttheoutcomeof the layer. 

The first layer in the RNN is quite similar to the feed-forward neural network and 

the recurrentneuralnetwork starts once the outputof the 

firstlayeriscomputed.Afterthislayer,eachunitwillremembersomeinformationfrom 

thepreviousstepsothatitcanactasamemorycellinperforming computations. 

 

ApplicationsofArtificialNeuralNetworks 

 
1. Social Media: Artificial Neural Networks are used heavily in Social Media. For 

example,let’stakethe ‘Peopleyoumayknow’ featureonFacebookthat 

suggestspeoplethatyoumightknowinreallifesothatyoucansendthem friend requests. 

Well, this magical effect is achieved by using Artificial Neural Networks that 

analyze your profile, your interests, your current friends, and also their friends and 

various other factors to calculate the people you mightpotentially know. Another 

common application of Machine Learningin social media is facial recognition. 

This is done by finding around 100 reference points on the person’s face and then 

matching them with those already available in the database using convolutional 

neural networks. 

2. Marketing and Sales: When you log onto E-commerce sites like Amazon and 

Flipkart, they will recommend your products to buy based on your previous 

browsing history. Similarly, suppose you love Pasta, then Zomato, Swiggy, etc. 

will show you restaurant recommendations based on your tastes and previous 

orderhistory.Thisistrueacrossallnew-agemarketingsegmentslikeBook 

sites,Movieservices,Hospitalitysites,etc.anditisdonebyimplementing personalized 

marketing. This uses Artificial Neural Networks to identify the customer likes, 

dislikes, previous shopping history, etc., and thentailor the marketing campaigns 

accordingly. 

3. Healthcare: Artificial Neural Networks are used in Oncology to train algorithms 

thatcanidentify canceroustissueatthemicroscopiclevelatthesameaccuracy as trained 

physicians. Various rare diseases may manifest in physical characteristics and can 

be identified in their premature stages by using Facial Analysis on the patient 

photos. So the full-scale implementation of Artificial Neural Networks in the 

healthcare environment can only enhance the diagnostic abilities of medical 

experts and ultimately lead to the overall improvement in the quality of medical 

care all over the world. 

4. Personal Assistants: Applications like Siri, Alexa, Cortana, etc., and also heard 

thembasedonthephonesyouhave!!!Thesearepersonalassistantsandan 

https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
https://www.geeksforgeeks.org/machine-learning/


B.Tech–CSE R-20 

DeepLearning 

 

 

exampleofspeechrecognitionthatuses NaturalLanguageProcessing to interact 

with the users and formulate a response accordingly. Natural Language Processing 

uses artificial neural networks that are made to handle many tasks of these 

personal assistants such as managing the language syntax, semantics,correct 

speech, the conversation that is going on, etc. 

 

NeuralNetwork,Non-linearclassificationexampleusingNeural 

Networks: XOR/XNOR: 

XORproblemwithneuralnetworks: 

Among various logical gates, the XOR or also known as the 

“exclusive or” problem is one of the logical operations when 

performed onbinaryinputs that yield output for different 

combinations of input, and for the same combination of input no 

output is produced. The outputs generated by the XOR logic are 

notlinearlyseparable in the hyperplane. So, in this article let us 

see what is the XOR logic and how to integrate the XOR logic 

using neural networks. 

From the below truth table, it can be inferred that XOR 

produces an output for different states of inputs and for thesame 

inputs the XOR logic does not produce any output. The Output of 

XOR logic is yielded by the equation as shown below. 
 

X Y Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output=X.Y’+X’.Y 

 
The XOR gate can be usually termed as a combination of NOT and 

AND gates and this type of logic finds its vast application in cryptography 
and fault tolerance. The logical diagram of an XOR gate is shown below. 

https://analyticsindiamag.com/a-hands-on-guide-to-linear-discriminant-analysis-for-binary-classification/
https://analyticsindiamag.com/a-guide-to-quadratic-approximation-with-logistic-regression/
https://analyticsindiamag.com/kernel-regularizers-with-neural-networks/
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Thelinearseparabilityofpoints 

Linearseparabilityofpoints is the ability to classify the datapoints in 
thehyperplane by avoiding the overlapping of the classes in the planes. 
Each of the classes should fall above or below the separating line and then 
they are termed as linearly separable data points. With respect to logical 
gates operations like AND or OR the outputs generated by this logic are 
linearly separable in the hyperplane. The linear separable data points 
appear to be as shown below. 

 

 

 
So here we can see that the pink dots and red triangle points in the 

plot do not overlap each other and the linear line is easily separating the 
two classes where the upper boundary of the plot can be considered as one 
classification and the below region can be considered as the other region of 
classification. 

https://analyticsindiamag.com/feature-selection-using-svm-and-model-building/
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Needforlinearseparabilityinneuralnetworks 

Linear separability is required in neural networks is required asbasic 
operations of neural networks would be in N-dimensional space and the 
data points of the neural networks have to be linearly separable to 
eradicate the issues with wrong weight updation and wrong classifications 
Linear separability of data is also considered as one of the prerequisites 
which help in the easy interpretation of input spaces into points whether 
the network is positive and negative and linearly separate the data pointsin 
the hyperplane. 

 

HowtosolvetheXORproblemwithneuralnetworks: 

 

The XORproblemwith neural networkscan be solved byusing Multi- 
Layer Perceptrons or a neural network architecture with an input layer, 
hidden layer, and output layer. So during the forward propagationthrough 
the neural networks, the weights get updated to the corresponding layers 
and the XOR logic gets executed. The Neural network architecture to solve 
the XOR problem will be as shown below. 

 
 
 

 

 
So with this overall architecture and certain weight parameters 

between each layer, the XOR logic output can be yielded through forward 
propagation. The overall neural network architecture uses the ReLu 
activation function to ensure the weights updated in each of the processes 

https://analyticsindiamag.com/how-to-visualize-backpropagation-in-neural-networks/
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to be 1 or 0 accordingly where for the positive set of weights the output at 
the particular neuron will be 1 and for a negative weight updation at the 
particular neuron will be 0 respectively. So let us understand one outputfor 
the first input state 

 

Example:ForX1=0andX2=0weshouldgetaninputof0.Letussolveit. 
 

Solution:  
ConsideringX1=0andX2=0 

H1=RELU(0.1+0.1+0)=0 
H2=RELU(0.1+0.1+0)=0 

So now we have obtained the weights that were propagated from the 
input layertothehidden layer. Now,letus propagate fromthehiddenlayer to 
the output layer. 

 
Y=RELU(0.1+0.(-2))=0 

 
This is how multi-layer neural networks or also known as Multi- 

Layer perceptrons (MLP) are used to solve the XOR problem and for all 
other input sets the architecture provided above can be verified and the 
right outcome for XOR logic can be yielded. 

 
So, amongthevariouslogicaloperations,XORlogical operationisone 

such problem wherein linear separability of data points is not possible 
using single neurons or perceptrons. So, for solving the XOR problem for 
neural networks it is necessary to use multiple neurons in the neural 
network architecture with certain weights and appropriate activation 
functions to solve the XOR problem with neural networks. 

 
A perceptron is a neural network unit that does a precise 

computationtodetectfeaturesintheinputdata.Perceptronismainlyused 
toclassifythedataintotwoparts.Therefore,itisalsoknownasLinear 
BinaryClassifier. 
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Perceptron uses the step function that returns +1 if the weightedsum of 

itsinput 0 and -1. 

The activation function is used to map the input between the required 

valuelike (0, 1) or (-1, 1). 

Aregularneuralnetworklookslikethis: 
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Theperceptronconsistsof4parts. 

o InputvalueorOneinputlayer:Theinputlayeroftheperceptronismadeof artificial 

input neurons and takes the initial data into the system for further 

processing. 

o WeightsandBias: 

Weight: It represents the dimension or strength of the connection between 

units.Iftheweighttonode1tonode2hasahigherquantity,thenneuron1 has a 

more considerable influence on the neuron. 

Bias: It is the same as the intercept added in a linear equation. It is an 

additionalparameterwhichtaskistomodifytheoutputalongwiththe weighted 

sum of the input to the other neuron. 

o Netsum:Itcalculatesthetotalsum. 

o ActivationFunction: Aneuroncanbeactivatedornot,isdeterminedbyan 

activation function. The activation function calculates a weighted sum and 

further adding bias with it to give the result. 

 

 

 

Astandardneuralnetworklookslikethebelowdiagram. 
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How doesitwork? 

Theperceptronworksonthesesimplestepswhicharegiven below: 

a. Inthefirststep,alltheinputsxaremultipliedwiththeirweightsw. 
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b. Inthisstep,addalltheincreasedvaluesandcallthemtheWeightedsum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Inthelaststep,applytheweightedsumtoacorrectActivationFunction. For 

Example: 

AUnitStepActivationFunction, 

 

 

Therearetwotypesofarchitecture.Thesetypesfocusonthefunctionalityof artificial 

neural networks as follows- 

 

o SingleLayer Perceptron 
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o Multi-LayerPerceptron 

SingleLayerPerceptron 

The single-layer perceptron was the first neural network model, proposed in 

1958 by Frank Rosenbluth. It is one of the earliest models for learning. Our goal is to 

find a linear decision function measured by the weight vector w and the bias 

parameter b. 

To understand the perceptron layer, it is necessary to comprehend artificial 

neural networks (ANNs). The artificial neural network (ANN) is an information 

processing system, whose mechanism is inspired by the functionality of biological 

neural circuits. An artificial neural network consists of several processing units thatare 

interconnected. 

This is the first proposal when the neural model is built. The content of the 

neuron's local memory contains a vector of weight. The single vector perceptron is 

calculatedbycalculatingthesumoftheinputvectormultipliedbythecorresponding 

element of the vector, with each increasing the amount of the corresponding 

component of the vector by weight. The value that is displayed in the output is the 

input of an activation function. 

Let us focus on the implementation of a single-layer perceptron for an image 

classification problem using TensorFlow. The best example of drawing a single-layer 

perceptron is through the representation of "logistic regression." 

 

Now,wehavetodothefollowingnecessary stepsoftraininglogisticregression- 

 

o The weights are initialized with the random values at the origination of 

eachtraining. 



B.Tech–CSE R-20 

DeepLearning 

 

 

o For each element of the training set, the error is calculated with the difference 

between the desired output and the actual output. The calculated error isused 

to adjust the weight. 

o The process is repeated until the fault made on the entire training set is less 

than the specified limit until the maximum number of iterations has been 

reached. 

we will understand the concept of a multi-layer perceptron and its 

implementation in Python using the TensorFlow library. 

Multi-layerPerceptron: 

Multi-layerperceptionis alsoknownas MLP.Itis fully connecteddense layers, 

which transform any input dimension to the desired dimension. A multi-layer 

perception is a neural network that has multiple layers. To create a neural network, 

we combine neurons together so that the outputs of some neurons are inputs of 

other neurons. 

Agentleintroductiontoneuralnetworks&TensorFlowcanbefoundhere: 

• NeuralNetworks 

• IntroductiontoTensorFlow 

 

A multi-layer perceptron has one input layer and for each input, there is one 

neuron (or node), it has one output layer with a single node for each output andit 

can have any number of hidden layers and each hidden layer can have any 

numberofnodes.AschematicdiagramofaMulti-LayerPerceptron(MLP)isdepicted below. 
 

In the multi-layer perceptron diagram above, we can see that there are three inputsand 

thus three input nodes and the hidden layer has three nodes. The output layer gives two 

outputs, therefore there are two output nodes. The nodes in the input layer take input and 

forward it for further process, in the diagram above the nodes in the input layer forwardstheir 

output to each of the three nodes in the hidden layer, and in the same way, the hidden layer 

processes the information and passes it to the output layer. 

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/introduction-to-tensorflow/
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Every node in the multi-layer perception uses a sigmoid activation function. The 

sigmoidactivationfunctiontakesrealvaluesasinputandconvertsthemtonumbers between 0 and 1 

using the sigmoid formula. 

FeedForwardNetwork: 

Whyareneuralnetworks used? 

 
Neuronal networks can theoretically estimate any function, regardless of its 

complexity. Supervised learning is a method of determining the correct Y for a fresh X by 

learning a function that translates a given X into a specified Y. But what are the differences 

between neural networks and other methods of machine learning? The answer is based on the 

Inductive Bias phenomenon, a psychological phenomenon. 

 

Machine learning models are built on assumptions such as the one where X and Y are 

related. An Inductive Bias of linear regression is the linear relationship between X and Y. In 

this way, a line or hyperplane gets fitted to the data. 

 

When X and Y have a complex relationship, it can get difficult for a LinearRegression 

method to predict Y. For this situation, the curve must be multi-dimensional or approximate 

to the relationship. 

 

A manual adjustment is needed sometimes based on the complexity of the function 

and thenumberoflayers within thenetwork. In most cases, trialand error methods combined 

with experience get used to accomplishingthis. Hence, this is the reason these parameters are 

called hyperparameters. 
 

Whatisa feedforwardneural network? 

 
Feed forward neural networks are artificial neural networksin which nodes do not 

form loops. This type of neural network is also known as a multi-layer neural network as all 

information is only passed forward. 

 

During data flow, input nodes receive data, which travel through hidden layers, and 

exit output nodes. Nolinks exist in the network that could get used to bysending information 

back from the output node. 

 

Afeed forwardneuralnetworkapproximatesfunctionsinthefollowingway: 

 

• Analgorithm calculatesclassifiers byusingthe formulay=f* (x). 

• Inputxisthereforeassignedtocategoryy. 

• According to the feed forward model, y = f (x; θ). This value determines the 

closestapproximation of the function. 

 

Feed forward neural networks serve as the basis for object detection in photos, as 

shown in the Google Photos app. 

https://www.turing.com/kb/importance-of-artificial-neural-networks-in-artificial-intelligence
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Whatistheworkingprincipleofafeedforwardneuralnetwork? 

 

When the feed forward neural network gets simplified, it can appear as a single layer 

perceptron. 

 

This model multiplies inputs with weights as they enter the layer. Afterward, the 

weighted input values get added together to get the sum. As long as the sum of the values 

rises aboveacertain threshold, set at zero,theoutput valueis usually1, whileifit falls below the 

threshold, it is usually -1. 

 

As a feed forward neural network model, the single-layer perceptron often gets used 

for classification. Machine learning can also get integrated into single-layer perceptrons. 

Through training, neural networks can adjust their weights based on a property called the 

delta rule, which helps them compare their outputs with the intended values. 

 

As a result of training and learning, gradient descent occurs. Similarly, multi-layered 

perceptrons update their weights. But, this process gets known as back-propagation. If this is 

the case, the network's hidden layers will get adjusted according to the output valuesproduced 

by the final layer. 

 

Layersof feedforwardneuralnetwork 
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• Inputlayer: 

 
The neurons of this layer receive input and pass it on to the other layers of the 

network. Feature or attribute numbers in the dataset must match the number of 
neurons in the input layer. 

 
• Outputlayer: 

 
According to the type of model getting built, this layer represents the forecasted 

feature. 

 
• Hiddenlayer: 

 
Input and output layers get separated by hidden layers. Depending on the type of 

model, there may be several hidden layers. 
 

There are several neurons in hidden layers that transform the input beforeactually 
transferring it to the next layer. This network gets constantly updated with weights in 
order to make it easier to predict. 

 
• Neuronweights: 

 
Neurons get connected by a weight, which measures their strength or magnitude. 

Similartolinearregression coefficients,inputweightscanalsogetcompared. Weight is 
normally between 0 and 1, with a value between 0 and 1. 

 
• Neurons: 

 
Artificial neurons get used in feed forward networks, which later get adapted from 

biological neurons. A neural network consists of artificial neurons. Neurons functionin 
two ways: first, they create weighted input sums, and second, they activate the sums 
to make them normal. 

 
Activation functions can either be linear or nonlinear. Neurons have weights 

based on their inputs. During the learning phase, the network studies these weights. 
 
 

 
• ActivationFunction: 

 
Neurons are responsible for making decisions in this area. According to the 

activation function, the neurons determine whether to make a linear or nonlinear 
decision. Since it passes through so many layers, it prevents the cascading effect 
from increasing neuron outputs. 

 
An activation function can be classified into three major categories: sigmoid, 

Tanh, and Rectified Linear Unit (ReLu). 
 

a) Sigmoid: 
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Input values between0and1getmappedtotheoutputvalues. 

 
b) Tanh: 

 

A valuebetween-1and 1getsmappedto theinputvalues. 

 
c) RectifiedLinearUnit: 

 

Onlypositivevaluesareallowedtoflowthroughthisfunction.Negative 
values get mapped to 0. 

 

Functioninfeedforwardneuralnetwork: 

 

 
Cost function 

 
In a feed forward neural network, the cost function plays an important role.The 

categorized data points are little affected by minor adjustments to weights and 
biases. Thus, a smooth cost function can get used to determine a method ofadjusting 
weights and biases to improve performance. 

 
Followingisa definitionofthemeansquareerrorcostfunction: 

 

 

 
Where, 

 
w=theweightsgatheredinthenetwork b = 

biases 

n= numberofinputsfortraining 
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a=outputvectors x 

= input 

‖v‖=vectorv'snormallength 

 
Lossfunction 

 
The loss function of a neural network gets used to determine if an adjustment 

needs to be made in the learning process. 

 
Neurons in the output layer are equal to the number of classes. Showing the 

differences between predicted and actual probability distributions. Following is the 
cross-entropy loss for binary classification. 

 
 

 

 

 
Asa resultofmulticlasscategorization,across-entropyloss occurs: 

 
 

 
Gradientlearning algorithm 

 
In the gradientdescentalgorithm, the next point gets calculatedbyscaling the 

gradient at the current position by a learning rate. Then subtracted from the current 
position by the achieved value. 

 
To decrease the function, it subtracts the value (to increase, it would add). As 

an example, here is how to write this procedure: 
 

 
The gradient gets adjusted by the parameter η, which also determines thestep 

size. Performance is significantly affected by the learning rate in machine learning. 
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Output units 

 
In the output layer, output units are those units that provide the desired output 

or prediction, thereby fulfilling the task that the neural network needs to complete. 

 
There is a close relationship between the choice of output units and the cost 

function. Any unit that can serve as a hidden unit can also serve as an output unit ina 
neural network. 

 

AdvantagesoffeedforwardNeuralNetworks 

• Machinelearningcanbeboostedwithfeedforwardneuralnetworks'simplified 
architecture. 

• Multi-networkinthefeedforwardnetworksoperateindependently,witha 
moderated intermediary. 

• Complextasksneedseveralneuronsinthenetwork. 
• Neural networks can handle and process nonlinear data easily comparedto 

perceptrons and sigmoid neurons, which are otherwise complex. 
• A neural network deals with the complicated problem of decision 

boundaries. 
• Depending on the data, the neural network architecture can vary. For 

example, convolutional neural networks (CNNs) perform exceptionally 
well in image processing, whereas Recurrent Neural Networks(RNNs) 
perform well in text and voice processing. 

• Neural networks need Graphics Processing Units (GPUs) to handle large 
datasets for massive computational and hardware performance. Several 
GPUs get used widely in the market, including Kaggle Notebooks and 
Google Collab Notebooks. 

 
Applicationsoffeedforwardneuralnetworks: 

 

 
Therearemanyapplicationsfortheseneuralnetworks.Thefollowingareafewof them. 

https://www.turing.com/kb/recurrent-neural-networks-and-lstm
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A) Physiologicalfeedforwardsystem 

 
Itispossibletoidentifyfeedforwardmanagementinthissituationbecausethecentral involuntary 
regulates the heartbeat before exercise. 

 
B) Generegulationandfeedforward 

 
Detectingnon-temporarychangestotheatmosphereisafunctionofthismotifasafeed forward 
system. You can find the majority of this pattern in the illustrious networks. 

 
C) Automationandmachinemanagement 

 
Automationcontrolusingfeedforwardisoneofthedisciplinesinautomation. 

 
D) Parallelfeedforwardcompensationwithderivative 

 
An open-loop transfer converts non-minimum part systems into minimum part systems using 
this technique. 

 
Understandingthemathbehindneuralnetworks 

 
Typical deep learning algorithms are neural networks (NNs). As a result of their 

unique structure, their popularity results from their 'deep' understanding of data. 

 
Furthermore, NNs are flexible in terms of complexity and structure. Despite all the 

advanced stuff, they can't work without the basic elements: they may work better with the 
advanced stuff, but the underlying structure remains the same. 

 
 
 
 

 

DeepFeed-forwardnetworks: 
 

NNsget constructed similarlyto ourbiologicalneurons, and theyresemble the 
following: 
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Neurons are hexagons in this image. In neural networks, neurons getarranged 
into layers: input is the first layer, and output is the last with the hiddenlayer in the 
middle. 

 
NN consists of two main elements that compute mathematical operations. 

Neurons calculate weighted sumsusinginput dataandsynaptic weights sinceneural 
networks are just mathematical computations based on synaptic links. 

 
Thefollowingisasimplifiedvisualization: 

 

 
Ina matrixformat,itlooks as follows: 

 

 
Inthe third step,avectorofonesgetsmultipliedbytheoutput of ourhidden 

layer: 
 
 

 

 
 
 

 
Using the output value, we can calculate the result. Understanding these 

fundamental concepts will make building NN much easier, and you will be amazed at 
how quickly you can do it. Every layer's output becomes the following layer's input. 
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Thearchitectureofthenetwork: 

 
In a network, the architecture refers to the number of hidden layers and unitsin 

each layer that make up the network.A feed forward network based on the Universal 
Approximation Theorem must have a "squashing" activation function at least on one 
hidden layer. 

 
The network can approximate any Borel measurable function within a finite- 

dimensional space with at least some amount of non-zero error when there are 
enough hidden units. It simply states that we can always represent any functionusing 
the multi-layer perceptron (MLP), regardless of what function we try to learn. 

 
Thus, we now know there will always be an MLP to solve our problem, but 

there is no specific method for finding it. It is impossible to say whether it will be 
possible to solve the given problem if we use N layers with M hidden units. 

 
Research is still ongoing, and for now, the only way to determine this 

configuration is by experimenting with it. While it is challenging to find theappropriate 
architecture, we need to try many configurations before finding the one that can 
represent the target function. 

 
There are two possible explanationsfor this.Firstly, the optimization algorithm 

may not find the correct parameters, and secondly, the training algorithms may use 
the wrong function because of overfitting. 

 

Whatisbackpropagationinfeedforwardneuralnetwork? 

 
Backpropagation is a technique based on gradient descent. Each stage of a 

gradient descent process involves iteratively moving a function in the opposite 
direction of its gradient (the slope). 

 
The goal is to reduce the cost function given the training data while learning a 

neural network. Network weights and biases of all neurons in each layer determine 
the cost function. Backpropagation gets used to calculate the gradient of the cost 
function iteratively. And then update weights and biases in the opposite direction to 
reduce the gradient. 

 
We must define the error of the backpropagation formula to specify ith neuron 

in the ith layer of a network for the j-th training. Example as follows (in which 
represents the weighted input to the neuron, and L represents the loss.) 

 

 
In backpropagationformulas,theerrorisdefinedasabove: 
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Below is the full derivation of the formulas. For each formula below, L stands 
for the output layer, g for the activation function, ∇ the gradient, W[l]T layer l weights 
transposed. 

 
A proportional activation of neuron i at layer l based on bli bias from layer i to 

layer i, w[k] weight from layer l to layer l-1, and ak−1activation of neuron k at layer l-1 
for training example j. 

 

 

 
The first equation shows how to calculate the error at the output layer for 

sample j. Following that, we can use the second equation to calculate the error in the 
layer just before the output layer. 

 
Based on the error values for the next layer, the second equation cancalculate 

the error in any layer. Because this algorithm calculates errors backward, it is known 
as backpropagation. For sample j, we calculate the gradient of the loss function by 
taking the third and fourth equations and dividing them by the biases and weights. 

 
Wecan update biasesand weights by averaging gradients of the lossfunction 

relative to biases and weights for all samples using the average gradients. The 
process is known as batch gradient descent. We will have to wait a long time if we 
have too many samples. 

 
If each sample has a gradient, it is possible to update the biases/weights 

accordingly. The process is known as stochastic gradient descent. Even though this 
algorithm is faster than batch gradient descent, it does not yield a good estimate of 
the gradient calculated using a single sample. 

 
It is possible to update biases and weights based on the average gradients of 

batches. It gets referred to as mini-batch gradient descent and gets preferred overthe 
other two. 

 

StochasticGradientDescent(SGD): 
Gradient Descent is an iterative optimization process that searches for an objective 

function’soptimumvalue(Minimum/Maximum).Itisoneofthemostusedmethodsfor 

https://www.turing.com/kb/j
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changing a model’s parameters in order to reduce a cost function in machine learningprojects. 

Theprimarygoalofgradientdescentistoidentifythemodelparametersthat provide the 

maximum accuracy on both training and test datasets. In gradient descent, the gradient is a 

vector pointing in the general direction of the function’s steepest rise at a 

particularpoint.Thealgorithmmightgraduallydroptowardslowervaluesofthefunction by moving 

in the opposite direction of the gradient, until reaching the minimum of the function. 

TypesofGradientDescent: 

Typically,therearethreetypesofGradientDescent: 

1. BatchGradientDescent 

2. StochasticGradientDescent 

3. Mini-batchGradientDescent 

 

1. StochasticGradientDescent(SGD): 

Stochastic Gradient Descent(SGD) isa variant of the GradientDescentalgorithm that is 

used for optimizing machine learning models. It addresses the computational inefficiency of 

traditional Gradient Descent methods when dealing with large datasets in machine learning 

projects. 

In SGD, instead of using the entire dataset for each iteration, only a single random 

trainingexample(orasmallbatch)isselectedtocalculatethegradientandupdatethe model 

parameters. This random selection introduces randomness into the optimization process, 

hence the term “stochastic” in stochastic Gradient Descent. 

TheadvantageofusingSGDisitscomputationalefficiency,especiallywhen dealing with 

large datasets. By using a single example or a small batch, the computational cost per 

iteration is significantly reduced compared to traditional Gradient Descent methods that 

require processing the entire dataset. 

StochasticGradientDescentAlgorithm: 

• Initialization:Randomlyinitializetheparametersofthemodel. 

• SetParameters:Determinethenumberofiterationsandthelearningrate (alpha) for 

updating the parameters. 

• Stochastic Gradient Descent Loop: Repeat the following steps until the model 

converges or reaches the maximum number of iterations: 

a. Shufflethetrainingdatasettointroducerandomness. 

b. Iterateovereachtrainingexample(orasmallbatch)intheshuffledorder. 

c. Computethegradientofthecostfunctionwithrespecttothemodel parameters 

using the current training example (or batch). 

d. Update the model parameters by taking a step in the direction of the 

negativegradient, scaled by the learning rate. 

e. Evaluate the convergence criteria, such as the difference in the cost function 

between iterations of the gradient. 

• ReturnOptimizedParameters:Oncetheconvergencecriteriaaremet 

orthemaximumnumberofiterationsisreached,returntheoptimizedmodel parameters. 

https://www.geeksforgeeks.org/difference-between-batch-gradient-descent-and-stochastic-gradient-descent/
https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/
https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/
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In SGD, since only one sample from the dataset is chosen at random for eachiteration, 

the path taken by the algorithm to reach the minima is usually noisier than your typical 

Gradient Descent algorithm. But that doesn’t matter all that much because the path taken by 

the algorithm does not matter, as long as we reach the minimum and with a significantly 

shorter training time. 

HiddenUnits: 

 

Inneural networks, a hidden layer is located between the input and output of the 

algorithm,inwhichthefunctionappliesweightstotheinputsanddirectsthemthrough anactivation 

function as the output. In short, the hidden layers perform nonlinear transformations of the 

inputs entered into the network. Hidden layers vary depending on the function of the neural 

network, and similarly, the layers may vary depending on their associated weights. 

 

HowdoesaHiddenLayerwork? 

 
Hidden layers, simply put, are layers of mathematical functions each designed to 

produce an output specific to an intended result. For example, some forms of hidden layers 

are known as squashing functions. These functions are particularly useful when the intended 

output of the algorithm is aprobabilitybecause they take an input and produce an output value 

between 0 and 1, the range for defining probability. 

 

Hidden layers allow for the function of a neural network to be broken down into 

specific transformations of the data. Each hidden layer function is specialized to produce a 

defined output. For example, a hidden layer functions that are used to identify human eyes 

and ears may be used in conjunction by subsequent layers to identify faces in images. While 

the functions to identify eyes alone are not enough to independently recognize objects, they 

can function jointly within a neural network. 

HiddenLayersandMachine Learning: 

Hidden layers are very common in neural networks, however their use andarchitecture 

often vary from case to case. As referenced above, hidden layers can beseparated by their 

functional characteristics. For example, in a CNN used for object recognition, a hidden layer 

that is used to identify wheels cannot solely identify a car, however when placed in 

conjunction with additional layers used to identify windows, a large metallic body, and 

headlights, the neural network can then make predictions and identify possible cars within 

visual data. 

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/probability
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ChoosingHidden Layers 

1. Wellifthedataislinearlyseparablethen youdon'tneedanyhidden layers 

at all. 

 

2. If data is less complex and is having fewer dimensions or 

featuresthen neural networks with 1 to 2 hidden layers would work. 

 

3. Ifdataishavinglargedimensionsorfeaturesthentogetan optimum 

solution, 3 to 5 hidden layers can be used. 

It should be kept in mind that increasing hidden layers would also 

increase the complexity of the model and choosing hidden layers such as 8, 9, 

or in two digits may sometimes lead to overfitting. 

ChoosingNodesinHidden Layers 

Once hidden layers have been decided the next task is to choose the 

number of nodes in each hidden layer. 

 

1. The number of hidden neurons should be between the size of 

theinput layer and the output layer. 

 

2. Themostappropriatenumberofhiddenneuronsis 
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Sqrt(inputlayernodes*outputlayernodes) 

 

3. The number of hidden neurons should keep on decreasing in 

subsequent layers to get more and more close to pattern and 

feature extraction and to identify the target class. 

The above algorithms are only a general use case and they can be 

moulded according to use case.Sometimes the number of nodes in hidden 

layers can increase also in subsequent layers and the number of hidden layers 

can also be more than the ideal case. 

This whole depends upon the use case and problem statement that we 

are dealing with. 

ArchitectureDesign: 

Typesofneuralnetworksmodelsarelistedbelow: 

 
• Perceptron 

• FeedForwardNeural Network 

• MultilayerPerceptron 

• ConvolutionalNeuralNetwork 

• RadialBasisFunctionalNeuralNetwork 

• RecurrentNeuralNetwork 

• LSTM– LongShort-Term Memory 

• SequencetoSequenceModels 

• ModularNeural Network 

 

https://www.mygreatlearning.com/academy/learn-for-free/courses/multilayer-perceptron?gl_blog_id=8851
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AnIntroductiontoArtificialNeuralNetwork 

 
Neuralnetworksrepresent deeplearningusingartificialintelligence.Certain application 

scenarios are too heavy or out of scope for traditional machine learningalgorithms to handle. 

As they are commonly known, Neural Network pitches in such scenarios and fills the gap. 

Also, enroll in theneural networks and deep learningcourse and enhance your skills today. 

 

Artificial neural networks are inspired by the biological neurons within the human 

body which activate under certain circumstances resulting in a related action performed bythe 

body in response. Artificial neural nets consist of various layers of interconnected artificial 

neurons powered by activation functions that help in switching them ON/OFF. Like 

traditionalmachine algorithms, here too, there are certain values that neural nets learn in the 

training phase. 

 

Briefly, each neuron receives a multiplied version of inputs and random weights, 

which is then added with a static bias value (unique to each neuron layer); this is then passed 

to an appropriate activation function which decides the final value to be given out of the 

neuron. There are various activation functions available as per the nature of input values. 

Once the output is generated from the final neural net layer, loss function (input vs output) is 

calculated,andbackpropagationisperformedwheretheweightsareadjustedtomaketheloss 

minimum. Finding optimal values of weights is what the overall operation focuses around. 

Please refer to the following for better understanding. 

 

 

Weightsare numeric values that are multiplied by inputs. In backpropagation, they are 

modified to reduce the loss. In simple words, weights are machine learned values fromNeural 

Networks. They self-adjust depending on the difference between predicted outputs vs training

 inputs. 

ActivationFunctionisamathematicalformulathathelpstheneurontoswitchON/OFF. 

https://www.mygreatlearning.com/blog/what-is-deep-learning/
https://www.mygreatlearning.com/artificial-intelligence/courses
https://www.mygreatlearning.com/academy/learn-for-free/courses/introduction-to-neural-networks-and-deep-learning?gl_blog_id=8851
https://www.mygreatlearning.com/blog/clustering-algorithms-in-machine-learning/
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• Inputlayer representsdimensionsoftheinputvector. 

• Hidden layer represents the intermediary nodes that divide the input space into 

regions with (soft) boundaries. It takes in a set of weighted input and produces 

output through an activation function. 
• Outputlayer representstheoutputoftheneural network. 

 

Backpropagation: 

BackpropagationProcessinDeepNeural Network: 
 

Backpropagationis one of the important concepts of a neural network. Our 

task is to classify our data best. For this, we have to update the weights of parameter 

and bias, but how can we do that in a deep neural network? In the linear regression 

model,weusegradientdescenttooptimizetheparameter.Similarlyherewealsouse 

gradient descent algorithm using Backpropagation. 

For a single training example, Backpropagationalgorithm calculates the 

gradient of theerror function. Backpropagation can be written as a function of the 

neural network. Backpropagation algorithms are a set of methods used to efficiently 

train artificial neural networks following a gradient descent approach which exploits 

the chain rule. 

The main features of Backpropagation are the iterative, recursive and efficient 

method through which it calculates theupdated weight to improve the network until 

it is not able to perform the task for which it is being trained. Derivatives of the 

activation function to be known at network design time is required to 

Backpropagation. 

Now, how error function is used in Backpropagation and howBackpropagation 

works? Let start with an example and do it mathematically to understand how exactly 

updates the weight using Backpropagation. 
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Inputvalues 

X1=0.05 

X2=0.10 

Initialweight 

W1=0.1 W5=0.40 

W2=0.20 W6=0.45 

W3=0.25 W7=0.50 

W4=0.30 W8=0.55 

BiasValues 

b1=0.35 b2=0.60 

TargetValues 

T1=0.01 

T2=0.99 

Now,wefirstcalculatethevaluesofH1andH2byaforward pass. 

ForwardPass 

TofindthevalueofH1wefirstmultiplytheinputvaluefromtheweightsas 
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H1=x1×w1+x2×w2+b1 

H1=0.05×0.15+0.10×0.20+0.3 

H1=0.3775 

 

TocalculatethefinalresultofH1,weperformedthesigmoid functionas 

 

 

WewillcalculatethevalueofH2in thesamewayas H1 

H2=x1×w3+x2×w4+b1 

H2=0.05×0.25+0.10×0.30+0.35 

H2=0.3925 

TocalculatethefinalresultofH1,weperformedthesigmoid functionas 

 

 

 

Now, we calculate thevalues of y1 and y2 inthe same way as we calculate the 

H1 and H2. To find the value of y1, we first multiply the input value i.e., the outcome 

of H1 and H2 from the weights as 
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y1=H1×w5+H2×w6+b2 

y1=0.593269992×0.40+0.596884378×0.45+0.60 

y1=1.10590597 

Tocalculatethefinalresultofy1weperformedthesigmoidfunctionas 

 

 

Wewill calculatethevalueofy2 in thesame wayas y1 

y2=H1×w7+H2×w8+b2 

y2=0.593269992×0.50+0.596884378×0.55+0.60 

y2=1.2249214 

TocalculatethefinalresultofH1,weperformedthesigmoid functionas 

 

 

 

Our target values are 0.01 and 0.99. Our y1 and y2 value is not matched with 

our target values T1 and T2. Now, we will find the total error, which is simply the 

difference between the outputs from the target outputs. The total error is calculated 

as 
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So,thetotalerror is 

 

 

 

Now,wewillbackpropagatethiserror toupdatetheweightsusingabackward 

pass. 

Backwardpassattheoutputlayer 

To update the weight, we calculate the error correspond to each weight with 

the help of a total error. The error on weight w is calculated by differentiating total 

error with respect to w. 

 

 

Weperformbackwardprocesssofirstconsiderthelastweightw5as 

 

 

From equation two, it is clear that we cannot partially differentiate it with 

respect to w5 because there is no any w5. We split equation one into multiple terms 

so that we can easily differentiate it with respect to w5 as 
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w5as 

Now,wecalculateeachtermonebyonetodifferentiateEtotalwithrespectto 
 

 

 

Puttingthevalueofe-yin equation(5) 
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So, we put the values of in equation no (3) to find 

the final result. 

 

 

Now,wewillcalculatetheupdatedweightw5newwiththehelpofthefollowing 

formula 

 

 

In the same way, we calculate w6new, w7new, and w8newand this will give us the 

following values 

w5new=0.35891648 

w6new=408666186 

w7new=0.511301270 

w8new=0.561370121 

BackwardpassatHiddenlayer 

Now, we will backpropagate to our hidden layer and update the weight w1, 

w2, w3, and w4 as we have done with w5, w6, w7, and w8 weights. We will calculate 

the error at w1 as 

 

 

From equation (2), it is clear that we cannot partially differentiate it with 

respect to w1 because there is no any w1. We split equation (1) into multiple termsso 

that we can easily differentiate it with respect to w1 as 
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Now,wecalculateeachtermonebyonetodifferentiateEtotalwithrespectto 

w1as 

 

 

Weagain splitthisbecausethereisnoanyH1finaltermin Etoatalas 

 

 

 

willagainsplitbecauseinE1andE2thereisnoH1term. 

Splittingisdoneas 
 

 

 

Weagain Splitboth becausethereisno anyy1andy2termin E1andE2. We split 

it as 

 

 

 

Now,wefindthevalueof byputtingvaluesinequation(18)and(19)as From 

equation (18) 
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Fromequation(8) 

 

 

Fromequation(19) 

 

 

Puttingthevalueofe-y2in equation(23) 
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Fromequation(21) 

 

 

Nowfromequation(16)and(17) 
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Put thevalueof inequation(15)as 

 

 

Wehave weneedto figureout as 

 

 

Puttingthevalueofe-H1in equation(30) 

 

 

We calculate the partial derivative of the total net input to H1 with respect to 

w1 the same as we did for the output neuron: 



B.Tech–CSE R-20 

DeepLearning 

 

 

 

 

 

So, we put the values of in equation (13) to find the 

final result. 

 

 

Now,wewillcalculatetheupdatedweightw1newwiththehelpofthefollowing 

formula 

 

 

Inthesameway, wecalculatew2new,w3new,andw4andthiswillgiveusthe following 

values 

w1new=0.149780716 

w2new=0.19956143 

w3new=0.24975114 

w4new=0.29950229 

We have updated all the weights. We found the error 0.298371109 on the 

network when we fed forward the 0.05 and 0.1 inputs. In the first round of 

Backpropagation,thetotalerrorisdownto 0.291027924.Afterrepeatingthisprocess 

10,000,thetotalerrorisdownto0.0000351085.Atthispoint,theoutputsneurons 
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generate 0.159121960 and 0.984065734 i.e., nearby our target value when we 

feedforward the 0.05 and 0.1. 

Deeplearningframeworksandlibraries: 
DeepLearningFrameworks: 

Keras, TensorFlow and PyTorch are among the top three frameworks that are 
preferred by Data Scientists as well as beginners in the field of Deep Learning. 
This comparison on Keras vs TensorFlow vs PyTorch will provide you with acrisp 
knowledge about the top Deep Learning Frameworks and help you find out which 
one is suitable for you. In this blog you will get a complete insight into the above 
three frameworks in the following sequence: 

 
• IntroductiontoKeras,TensorFlow&PyTorch 

• ComparisonFactors 

• FinalVerdict 

Introduction 
Keras 

 

Keras is an open source neural networklibrary written in Python. It is capable 
ofrunningontopofTensorFlow.Itisdesignedtoenablefastexperimentation with deep 
neural networks. 

TensorFlow 
 

TensorFlow is an open-source software library for dataflow programming 
across a range of tasks. It is a symbolic math library that is used for machine 
learning applications like neural networks. 

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#introduction
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#comparison
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#final
https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/tensorflow-tutorial/


B.Tech–CSE R-20 

DeepLearning 

 

 

PyTorch 
 

PyTorchis an open-source machine learninglibrary for Python, based on 
Torch. It is used for applications such as natural language processing and was 
developed by Facebook’s AI research group. 

ComparisonFactors 
All the three frameworks are related to each other and also have certain basic 

differences that distinguishes them from one another. 
 

Theparametersthatdistinguishthem: 

 
• LevelofAPI 

• Speed 

• Architecture 

• Debugging 

• Dataset 

• Popularity 

LevelofAPI 
 

 
Keras is a high-level APIcapable ofrunning ontop of TensorFlow,CNTK and 

Theano. It has gained favor for its ease of use and syntactic simplicity,facilitating fast 
development. 

 
TensorFlow is a framework that provides both high and low level APIs. 

Pytorch, on the other hand, is a lower-level API focused on direct work with array 
expressions.Ithasgainedimmenseinterestinthelastyear,becomingapreferred 

https://www.edureka.co/blog/pytorch-tutorial/
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#level
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#speed
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#architecture
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#debugging
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#dataset
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#popularity
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solutionforacademicresearch,andapplicationsofdeeplearningrequiring optimizing 
custom expressions. 

Speed 
 

 
The performance is comparatively slowerinKeraswhereas TensorFlow and 

PyTorch provide a similar pace which is fast and suitable for high performance. 

Architecture 
 

Kerashas a simplearchitecture. It is more readable and concise. Tensorflow 
on the other hand is not very easy to use even though it provides Keras as a 
framework that makes work easier. PyTorch has a complex architecture and the 
readability is less when compared to Keras. 
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Debugging 
 

 

 
In keras, there is usually very less frequentneed to debug simple networks. 

But in case of Tensorflow, it is quite difficultto perform debugging. Pytorchon the 
other hand has better debugging capabilities as compared to the other two. 

Dataset 
 

Keras is usually used for small datasetsas it is comparatively slower. On the 
otherhand,TensorFlowandPyTorchareusedfor highperformancemodels and large 
datasets that require fast execution. 

Popularity 
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With the increasing demand in the field of Data Science,there has been an 
enormous growth of Deep learning technologyin the industry. With this, all the 
three frameworks havegained quite a lot of popularity. Kerastops the list 
followedbyTensorFlowandPyTorch.Ithasgainedimmensepopularitydueto its 
simplicity when compared to the other two. 

 
These were the parameters that distinguish all the three frameworks but there is 

no absolute answer to which one is better. The choice ultimately comes down to 

 
• Technicalbackground 

• Requirementsand 

• Ease ofUse 

FinalVerdict 
Now coming to the final verdict of Keras vs TensorFlow vs PyTorch let’s have 

a look at the situations that are most preferablefor each one of these three deep 
learning frameworks 

 
Kerasismost suitablefor: 

 
• RapidPrototyping 

• SmallDataset 

• Multipleback-endsupport 
 

 

TensorFlowismostsuitable for: 

 
• LargeDataset 

• HighPerformance 

• Functionality 

• ObjectDetection 

https://www.edureka.co/blog/tensorflow-object-detection-tutorial/
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PyTorchismostsuitable for: 

 
• Flexibility 

• ShortTrainingDuration 

• Debuggingcapabilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

UNIT-II: 
CONVOLUTIONNEURALNETWORK(CNN):IntroductiontoCNNs 

and their applications in computer vision, CNN basic architecture, 

Activation functions-sigmoid, tanh, ReLU, Softmax layer, Types of 

pooling layers, Training of CNN in TensorFlow, various popular CNN 

architectures:VGG, GoogleNet,ResNetetc, Dropout,Normalization, 

Data augmentation 

 
IntroductiontoCNNsandtheirapplicationsincomputervision: 

 
Deep Learning has proved to be a very powerful tool because of its 

ability to handle large amounts of data. The interest to use hidden layers has 

surpassed traditional techniques, especially in pattern recognition. One of the 
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most popular deep neural networks is Convolutional Neural Networks (also 

known as CNN or ConvNet) in deep learning, especially when it comes to 

Computer Vision applications. 

 

Sincethe1950s,the earlydaysofAI,researchershavestruggledtomake 

asystemthatcanunderstandvisualdata.Inthefollowingyears,thisfieldcame to be 

known as Computer Vision. In 2012, computer vision took a quantum leap 

when a group of researchers from the University of Toronto developed an AI 

model that surpassed the best image recognition algorithms, and that tooby a 

large margin. 

The AI system, which became known as AlexNet (named after its main 

creator, Alex Krizhevsky), won the 2012 ImageNet computer vision contestwith 

an amazing 85 percent accuracy. The runner-up scored a modest 74 percent on 

the test. 

At the heart of AlexNet was Convolutional Neural Networks a special 

type of neural network that roughly imitates human vision. 

BackgroundofCNNs 

CNN’s were first developed and used around the 1980s. The most that a 

CNNcoulddoatthattimewasrecognizehandwrittendigits.Itwasmostlyused 

inthepostalsectorstoreadzipcodes,pincodes,etc.Theimportantthingto 
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remember about any deep learning model is that it requires a large amount of 

data to train and also requires a lot of computing resources. This was a major 

drawback for CNNs at that period and hence CNNs were only limited to the 

postal sectors and it failed to enter the world of machine learning. 

In the past few decades, Deep Learning has proved to be a very powerful 

tool because of its ability to handle large amounts of data. The interest to use 

hidden layers has surpassed traditional techniques, especially in pattern 

recognition. One of the most popular deep neural networks is Convolutional 

Neural Networks (also known as CNN or ConvNet) in deep learning, especially 

when it comes to Computer Vision applications. 

 

 
Since the 1950s, the early days of AI, researchers have struggled to make a 

systemthatcan understand visualdata.In the following years, thisfield came to be 

known as Computer Vision. In 2012, computer vision took a quantum leap when a 

group of researchers from the University of Toronto developed an AI model that 

surpassed the best image recognition algorithms, and that too by a large margin. 

The AI system, which became known as AlexNet (named after its main 

creator, Alex Krizhevsky), won the 2012 ImageNet computer vision contest withan 

amazing 85 percent accuracy. The runner-up scored a modest 74 percent on the 

test. 
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At the heart of AlexNet was Convolutional Neural Networks a special type 

of neural network that roughly imitates human vision. Over the years CNNs have 

become a very important part of many Computer Vision applications and hence a 

part of any computer vision course online. So let’s take a look at the workings of 

CNNs or CNN algorithm in deep learning. 

• BackgroundofCNNs 

• WhatIsaCNN? 

• Howdoesitwork? 

• WhatIsaPoolingLayer? 

• Limitationsof CNNs 

 
BackgroundofCNNs 

CNN’s were first developed and used around the 1980s. The most that a 

CNN could do at that time was recognize handwritten digits. It was mostly used in 

the postal sectors to read zip codes, pin codes, etc. The important thing to 

remember about any deep learning model is that it requires a large amount of data 

to train and also requires a lot of computing resources. This was a major drawback 

for CNNs at that period and hence CNNs were only limited to the postal sectors 

and it failed to enter the world of machine learning. 

In 2012, Alex Krizhevsky realized that it was time to bring back the branch 

of deep learning that uses multi-layered neural networks. The availability of large 

sets of data, to be more specific ImageNet datasets with millions of labeled images 

and an abundance of computing resources enabled researchers to revive CNNs. 

WhatIsa CNN? 

In deep learning, a Convolutional Neural Network(CNN/ConvNet) is a 

class of deep neural networks, most commonly applied toanalyze visual imagery. 

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#81b6
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#be44
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#8ce1
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#01d2
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#d31e
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Now when we think of a neural network we think about matrix multiplications but 

that is not the case with ConvNet. It uses a special technique called Convolution. 

Now in mathematics convolution is a mathematical operation on two functionsthat 

produces a third function that expresses how the shape of one is modified by the 

other. 

 

Bottom line is that the ConvNet role to reduce the images into a form 

thatiseasiertoprocess,withoutlosingfeatures crucialforgoodprediction. 

Howdoesitwork? 

Before we go to the working of CNN’s let’s cover the basics such as 

what is an image and how is it represented. An RGB image is nothing but a 

matrix of pixel values having three planes whereas a grayscale image isthe 

same but it has a single plane. Take a look at this image to understand 

more. 
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Forsimplicity,considergrayscaleimagestounderstandhowCNNs 

work. 
 

 
The above image shows what a convolution is.We take a filter/kernel 

(3×3 matrix) and apply it to the input image to get the convolved feature. 

This convolved feature is passed on to the next layer. 
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In the case of RGB color, channel take a look at this animation to 

understand its working. 
 

Convolutional neural networks are composed of multiple layers of 
artificial neurons. Artificial neurons, a rough imitation of their biological 
counterparts, are mathematical functions that calculate the weighted 
sumofmultipleinputsandoutputsanactivationvalue.Whenyouinputan 
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image in a ConvNet, each layer generates several activation functions that 
are passed on to the next layer. 

The first layer usually extracts basic features such as horizontal or 
diagonal edges. This output is passed on to the next layer which detects 
more complex features such as corners or combinational edges. As we 
move deeper into the network it can identify even more complex features 
such as objects, faces, etc. 

 

 
Based on the activation map of the final convolution layer, the 

classificationlayeroutputsasetofconfidencescores(valuesbetween0 
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and 1) that specify how likely the image is to belong to a “class.” For 

instance, if you have a ConvNet that detects cats, dogs, and horses, the 

output of the final layer is the possibility that the input image contains anyof 

those animals. 

 

 
 

WhatIsaPoolingLayer? 

Similar to the Convolutional Layer, the Pooling layer is responsiblefor 

reducing the spatial size of the Convolved Feature. This is to decrease the 

computational power required to process the data by reducing the 

dimensions. There are two types of pooling average pooling and max 

pooling. 
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In Max Pooling, the maximum value of a pixel from a portion of the 

imagecoveredbythekernelisfoundout.MaxPoolingalsoperformsas a Noise 
Suppressant. It discards the noisy activations altogether and also performs 
de-noising along with dimensionality reduction. 

On the other hand,Average Poolingreturns the average of all the 
valuesfrom the portion of the image covered by the Kernel. Average 
Pooling simply performs dimensionality reduction as a noise suppressing 
mechanism. Hence, we can say that Max Pooling performs a lot better 
than Average Pooling. 
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BenefitsofUsingCNNsforMachineandDeepLearning 

 
Deep learning is a form of machine learning that requires a neural network with a minimum of 

three layers. Networks with multiple layers are more accurate than single-layer networks. Deep learning 

applications often use CNNs or RNNs (recurrent neural networks). 

 

The CNN architecture is especially useful for image recognition and image classification, as well 

as other computer vision tasks becausetheycan processlarge amounts of data andproducehighlyaccurate 

predictions. CNNs can learn the features of an object through multiple iterations, eliminating the need for 

manual feature engineering tasks like feature extraction. 

 

It is possible to retrain a CNN for a new recognition task or build a new model based on an 

existing network with trained weights. This is known as transfer learning. This enables ML model 

developers to apply CNNs to different use cases without starting from scratch. 

 

WhatAreConvolutionalNeuralNetworks(CNNs)? 

 
A Convolutional Neural Network (CNN) is a type of deep learning algorithm specificallydesigned 

for image processing and recognition tasks. Compared to alternative classification models, CNNs require 

less preprocessing as they can automatically learn hierarchical feature representations from raw 

inputimages.Theyexcelat assigningimportanceto variousobjectsandfeatureswithintheimagesthrough 

convolutional layers, which apply filters to detect local patterns. 

 

The connectivity pattern in CNNs is inspired by the visual cortex in the human brain, where 

neurons respond to specific regions or receptive fields in the visual space. This architecture enables CNNs 

to effectively capture spatial relationships and patterns in images. By stacking multiple convolutional and 

pooling layers,CNNscanlearn increasinglycomplex features, leading tohigh accuracyin taskslike image 

classification, object detection, and segmentation. 

 

 

ConvolutionalNeuralNetworkArchitectureModel 

 
Convolutional neural networks are known for their superiority over other artificial neural 

networks, given their ability to process visual, textual, and audio data. The CNN architecture comprises 

three main layers: convolutional layers, pooling layers, and a fully connected (FC) layer. 

 

There can be multiple convolutional and pooling layers. The more layers in the network, the 

greaterthecomplexityand(theoretically)theaccuracyofthemachinelearningmodel.Eachadditional 
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layerthatprocessestheinputdataincreasesthemodel’sabilitytorecognizeobjectsandpatternsinthe data. 

 

 

TheConvolutional Layer 
 

 
Convolutional layers are the key building block of the network, where most of the computations 

are carried out. It works by applying a filter to the input data to identify features. This filter, known as a 

feature detector, checks the image input’s receptive fields for a given feature. This operation is referred to 

as convolution. 

 

The filter is a two-dimensional array of weights that represents part of a 2-dimensional image. A 

filter is typically a 3×3 matrix, although there are other possible sizes. The filter is applied to a region 

withintheinput imageandcalculatesadotproductbetweenthe pixels,whichisfedto anoutputarray.The filter 

then shifts and repeats the process until it has covered the whole image. The final output of all the filter 

processes is called the feature map. 

 

The CNN typically applies the ReLU (Rectified Linear Unit) transformation to each feature map 

after every convolution to introduce nonlinearity to the ML model. A convolutional layer is typically 

followed by a pooling layer. Together, the convolutional and pooling layers make up a convolutionalblock. 

 

Additional convolution blocks will follow the first block, creating a hierarchical structure with 

later layers learning from the earlier layers. For example, a CNN model might train to detect cars inimages. 

Cars can be viewed as the sum of their parts, including the wheels, boot, and windscreen. Each feature of a 

car equates to a low-level pattern identified by the neural network, which then combines these parts to 

create a high-level pattern. 

 

 

ThePoolingLayers 
 

 
A pooling or down sampling layer reduces the dimensionality of the input. Like a convolutional 

operation, pooling operations use a filter to sweep the whole input image, but it doesn’t use weights. The 

filter instead uses an aggregation function to populate the output array based on the receptive field’svalues. 

 

 

Therearetwokeytypesof pooling: 

 

• Averagepooling:Thefiltercalculatesthereceptivefield’saveragevaluewhenitscanstheinput. 
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• Max pooling:The filter sends the pixel with the maximum value to populate the output array.This 

approach is more common than average pooling. 

 

 

Pooling layers are important despite causing some information to be lost, because they help reduce the 

complexity and increase the efficiency of the CNN. It also reduces the risk of overfitting. 

 

 

TheFullyConnected(FC)Layer 
 

 
ThefinallayerofaCNNisafullyconnectedlayer. 

 

The FC layer performs classification tasks using the features that the previous layers and filters 

extracted. Instead of ReLu functions, the FC layer typically uses a softmax function that classifies inputs 

more appropriately and produces a probability score between 0 and 1. 

 

BasicArchitectureof CNN: 

 

BasicArchitecture 

 

TherearetwomainpartstoaCNNarchitecture 

 
• A convolution tool that separates and identifies the various features 

of the image for analysis in a process called as Feature Extraction. 

• The network of feature extraction consists of many pairs of 

convolutional or pooling layers. 

• A fully connected layer that utilizes the output from the convolution 

process and predicts the class of the image based on the features 

extracted in previous stages. 

• This CNN model of feature extraction aims to reduce the number of 

features present in a dataset. It creates new features which 

summarizes the existing features contained in an original set of 

features. There are many CNN layersas shown in the CNN 

architecture diagram. 

ConvolutionLayers 

There are three types of layers that make up the CNN which are the 

convolutionallayers,poolinglayers,andfully-connected(FC)layers.When 
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these layers are stacked, a CNN architecture will be formed. In addition to 

these three layers, there are two more important parameters which are the 

dropoutlayerandtheactivationfunctionwhicharedefinedbelow. 

 

 
1. ConvolutionalLayer 

 

This layer is the first layer that is used to extract the various features 

from the input images. In this layer, the mathematical operation 

ofconvolutionisperformedbetweentheinputimageandafilterofa 

particularsizeMxM.Byslidingthefilterovertheinputimage,thedot product is 

taken between the filter and the parts of the input image with respect to the 

size of the filter (MxM). 

 
The output is termed as the Feature map which gives us information 

about the image such as the corners and edges. Later, this feature map is fedto 

other layers to learn several other features of the input image. 

 
TheconvolutionlayerinCNNpassestheresulttothenextlayer 

onceapplyingtheconvolutionoperationintheinput.Convolutional 

layersinCNNbenefitalotastheyensurethespatialrelationship between the 

pixels is intact. 

 
2. Pooling Layer 

 

In most cases, a ConvolutionalLayerisfollowedbya PoolingLayer. The 

primary aim of this layer is to decrease the size of the convolved feature map 

to reduce the computational costs. This is performed by decreasing the 

connectionsbetweenlayersandindependentlyoperatesoneachfeature map. 

Depending upon method used, there are several types of Pooling operations. It 

basically summarises the features generated by a convolution layer. 

 
InMaxPooling,thelargestelementistakenfromfeaturemap. Average 

Pooling calculates the average of the elements in a predefined sized 

Imagesection.Thetotalsumoftheelementsinthepredefinedsectionis 



B.Tech–CSE R-20 

DeepLearning 

 

 

computedinSumPooling.ThePoolingLayerusuallyservesasabridge between the 

Convolutional Layer and the FC Layer. 

 
This CNN model generalises the features extracted by the convolution 

layer, and helps the networks to recognise the features independently. With 

the help of this, the computations are also reduced in a network. 

 
3. FullyConnectedLayer 

 

TheFullyConnected(FC)layerconsistsoftheweightsandbiases along with 

the neurons and is used to connect the neurons between two different layers. 

These layers are usually placed before the output layer and form the last few 

layers of a CNN Architecture. 

 
In this, the input image from the previous layers are flattened and fedto 

the FC layer. The flattened vector then undergoes few more FC 

layerswherethemathematicalfunctionsoperationsusuallytakeplace.Inthis 

stage, the classification process begins to take place. The reason two layersare 

connected is that two fully connected layers will perform better than a single 

connected layer. These layers in CNN reduce the human supervision 

 
4. Dropout 

 

Usually, when all the features are connected to the FC layer, it 

cancauseoverfittinginthetrainingdataset.Overfittingoccurswhena 

particularmodelworkssowellonthetrainingdatacausinganegative impact in the 

model’s performance when used on a newdata. 

 
To overcome this problem, a dropout layer is utilised wherein a few 

neurons are dropped from the neural network during training process 

resulting inreduced size of the model. On passing a dropout of0.3, 30% ofthe 

nodes are dropped out randomly from the neural network. 

 
Dropout results in improving the performance of a machine learning 

model as it prevents overfitting by making the network simpler. It drops 

neurons from the neural networks during training. 
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5. ActivationFunctions 

 

Finally, one of the most important parameters of the CNN model is the 

activation function. They are used to learn and approximate any kind of 

continuous and complex relationship between variables of the network. In 

simple words, it decides which information of the model should fire in the 

forward direction and which ones should not at the end of the network. 

 
Itaddsnon-linearitytothenetwork.Thereareseveralcommonly used 

activation functions such as the ReLU, Softmax, tanH and the Sigmoid 

functions. Each of these functions have a specific usage. For a binary 

classificationCNNmodel,sigmoidandsoftmaxfunctionsarepreferredafor a 

multi-class classification, generally softmax us used. In simple terms, 

activation functions in a CNN model determine whether a neuron should be 

activatedornot.Itdecideswhethertheinputtotheworkisimportantor not to 

predict using mathematical operations. 

 
 
 
 

 

TypesofNeuralNetworks 

 
Activation Functions 

 

Thepopularactivationfunctionsare 

 
a) BinaryStepFunction 

 

Binarystepfunctiondependsonathresholdvaluethatdecideswhether 

aneuronshouldbeactivatedornot.Theinputfedtotheactivationfunctionis 

comparedtoacertainthreshold;iftheinputisgreaterthanit,thentheneuronis 

activated,elseitisdeactivated,meaningthatitsoutputisnotpassedontothe next 

hidden layer. 
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Mathematically,itcanberepresentedas: 

 
 

 

 
 
 

 
Thelimitationsofbinarystep functionare asfollows: 

• Itcannotprovidemulti-valueoutputs—forexample,itcannotbeusedfor 

multi-class classificationproblems. 

• Thegradientofthestepfunctioniszero,whichcausesahindranceinthe 

backpropagation process. 
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b) LinearActivationFunction: 

 

Thelinearactivationfunction,alsoknownas"noactivation,"or"identity 

function"(multipliedx1.0),iswheretheactivationisproportionaltotheinput. 

The function doesn't do anything to the weighted sum of the input, it simply 

spitsoutthevalueitwasgiven. 

 

 
 

 
Mathematically,itcanberepresentedas: 

 

 

 
 

 
However,alinearactivationfunctionhas twomajorproblems: 

• It’snotpossibletousebackpropagationasthederivativeofthefunction 

isaconstantandhasnorelationtotheinputx. 

• Alllayersoftheneuralnetworkwillcollapseintooneifalinearactivation 

functionisused.Nomatterthenumberoflayersintheneuralnetwork, 
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thelastlayerwillstillbealinearfunctionofthefirstlayer.So,essentially, 

alinearactivationfunctionturnstheneuralnetworkintojustonelayer. 

 

Non-LinearActivationFunctions 

Thelinearactivationfunctionshownaboveissimplyalinearregression 

model.Becauseof its limited power, this does not allow the model to create 

complexmappingsbetweenthenetwork’sinputsandoutputs. 

Non-linear activation functions solve the following limitations of linear 

activation functions: 

• Theyallowbackpropagationbecausenowthederivativefunctionwould 

berelatedtotheinput,andit’spossibletogobackandunderstandwhich 

weightsintheinputneuronscanprovideabetterprediction. 

• Theyallowthestackingofmultiplelayersofneuronsastheoutputwould 

nowbeanon-linearcombinationofinputpassedthroughmultiplelayers. 

Anyoutputcanberepresentedasafunctionalcomputationinaneural 

network. 

Belowaretendifferentnon-linearneuralnetworksactivationfunctionsand their 

characteristics. 

a) Sigmoid/LogisticActivationFunction 
 

This function takes any real value as input and outputs values in the 

rangeof0to1.Thelargertheinput(morepositive),theclosertheoutputvalue will be 

to 1.0, whereas the smaller the input (more negative), the closer the 

outputwillbeto0.0,asshownbelow. 
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Mathematically,itcanberepresentedas: 
 
 

 

 
 
 

 
Here’s why sigmoid/logistic activation function is one of the most widely 

used functions: 

• Itiscommonlyusedformodelswherewehavetopredicttheprobability 

asanoutput.Sinceprobabilityofanythingexistsonlybetweentherange 

of0and1,sigmoidistherightchoicebecauseofitsrange. 

• The function is differentiable and provides a smooth gradient, i.e., 

preventingjumpsinoutputvalues.ThisisrepresentedbyanS-shapeof 

thesigmoidactivationfunction. 

Thelimitationsofsigmoidfunctionarediscussedbelow: 

• Thederivativeofthefunctionisf'(x)=sigmoid(x)*(1-sigmoid(x)). 
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FromtheaboveFigure,thegradientvaluesareonlysignificantforrange 

-3 to 3, and the graph gets much flatter in other regions.It implies that for 

values greater than 3 or less than -3, the function will have very small 

gradients.Asthegradientvalueapproacheszero,thenetworkceasestolearn 

andsuffersfromtheVanishinggradientproblem. 

• Theoutputofthelogisticfunctionisnotsymmetricaroundzero.Sothe 

outputofalltheneuronswillbeofthesamesign.Thismakesthetrainingofthen

euralnetworkmoredifficultandunstable. 

b) TanhFunction(HyperbolicTangent) 

Tanhfunctionisverysimilartothesigmoid/logisticactivationfunction, 

andevenhasthesameS-shapewiththedifferenceinoutputrangeof-1to1. 

InTanh,thelargertheinput(morepositive),theclosertheoutputvaluewillbe 

to1.0,whereasthesmallertheinput(morenegative),theclosertheoutputwill be to 

-1.0. 

 

 
Mathematically,itcanberepresentedas: 

https://www.v7labs.com/training
https://www.v7labs.com/training
https://www.v7labs.com/training
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Advantagesofusingthisactivationfunctionare: 

• TheoutputofthetanhactivationfunctionisZerocentered;hencewecan 

easily map the output values as strongly negative, neutral, or strongly 

positive. 

• Usually used in hidden layers of a neural network as its values lie 

between-1to;therefore,themeanforthehiddenlayercomesouttobe 

0orveryclosetoit.Ithelpsincenteringthedataandmakeslearningfor the 

next layer much easier. 

 

 
It also faces the problem of vanishing gradients similar to the sigmoid 

activationfunction.Plusthegradientofthetanhfunctionismuchsteeperas 

comparedtothesigmoidfunction. 
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c) ReLUFunction 

ReLUstandsforRectifiedLinearUnit.Althoughitgivesanimpressionof a 

linear function, ReLU has a derivative function and allows for 

backpropagation whilesimultaneouslymaking itcomputationallyefficient. 

ThemaincatchhereisthattheReLUfunctiondoesnotactivateallthe 

neurons at the same time. 

Theneuronswillonlybedeactivatediftheoutputofthelinear 

transformationislessthan0. 

 
 

 

 
Mathematically,itcanberepresentedas: 

 

 

 
Note: Althoughbothsigmoidandtanhfacevanishinggradientissue, 

tanhiszerocentered,andthegradientsarenotrestrictedtomoveina certain 

direction. Therefore, in practice, tanh nonlinearity is always preferred 

to sigmoid nonlinearity. 
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Theadvantages ofusingReLUasanactivation functionareas follows: 

• Sinceonlyacertainnumberofneuronsareactivated,theReLUfunction 

isfarmorecomputationallyefficientwhencomparedtothesigmoidand tanh 

functions. 

• ReLU accelerates the convergence of gradient descent towards the 

global minimum of theloss functiondue to its linear, non-saturating 

property. 

Thelimitationsfacedbythisfunctionare: 

• TheDyingReLUproblem. 

 

 
 
 

The negative side of the graph makes the gradient value zero. Due to 

thisreason,duringthebackpropagationprocess,theweightsandbiasesfor 

someneuronsarenotupdated.Thiscancreatedeadneuronswhichneverget 

activated. 

• Allthenegativeinputvaluesbecomezeroimmediately,whichdecreases 

themodel’sabilitytofitortrainfromthedataproperly. 

Note:ForbuildingthemostreliableMLmodels,splityourdataintotrain,validation, and test 

sets. 

https://www.v7labs.com/blog/pytorch-loss-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
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d) LeakyReLU Function 

LeakyReLUisanimprovedversionofReLUfunctiontosolvetheDying 

ReLUproblemasithasasmallpositiveslopeinthenegativearea. 

 

 
Mathematically,itcanberepresentedas: 

 

 

 
 

 
TheadvantagesofLeakyReLUaresameasthatofReLU,inadditionto 

thefactthatitdoesenablebackpropagation,evenfornegativeinputvalues.By 

makingthisminormodificationfornegativeinputvalues,thegradientoftheleft 

sideofthegraphcomesouttobeanon-zerovalue.Therefore,we wouldno 

longerencounterdeadneuronsinthatregion. 

`HereisthederivativeoftheLeakyReLUfunction. 
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Thelimitationsthatthisfunctionfacesinclude: 

• Thepredictionsmaynotbeconsistentfornegativeinputvalues. 

• Thegradientfornegativevaluesisasmallvaluethatmakesthelearning 

ofmodelparameterstime-consuming. 

 

 

d) ParametricReLUFunction 

Parametric ReLU is another variant of ReLU that aims to solve the 

problemofgradient’sbecomingzeroforthelefthalfoftheaxis.Thisfunction 

provides the slope of the negative part of the function as an argumenta. By 

performingbackpropagation,themostappropriatevalueofaislearnt. 
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Mathematically,itcanberepresentedas: 

 
 

 

 
 
 

 
Where"a"is theslopeparameterfornegativevalues. 

TheparameterizedReLUfunctionisusedwhentheleakyReLUfunction 

stillfailsatsolvingtheproblemofdeadneurons,andtherelevantinformationis 

notsuccessfullypassedtothenextlayer. 

This function’s limitation is that it may perform differently for different 

problemsdependinguponthevalueofslopeparametera. 

 
 
 

 

TypesofpoolingLayers: 
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AConvolutionalneuralnetwork(CNN)isaspecialtypeofArtificialNeuralNetworkthat is 

usually used for image recognition and processing due to its ability to recognize patterns in 

images. It eliminates the need to extract features from visual data manually. It learns images 

by sliding a filter of some size on them and learning not just the features from the data but 

also keeps Translation invariance. 

 

Thetypicalstructureofa CNNconsistsof threebasiclayers 

 
1. Convolutional layer:These layersgenerate a feature mapby sliding a filter over the input 

image and recognizing patterns in images. 

2. Poolinglayers:Theselayers downsamplethefeaturemaptointroduceTranslation invariance, 

which reduces the overfitting of the CNN model. 

3. FullyConnectedDenseLayer:Thislayercontainsthesamenumberofunitsasthenumber of 

classes and the output activation function such as “softmax” or “sigmoid” 

 

Whatare Pooling layers? 

Pooling layers are one of the building blocks of Convolutional Neural Networks. 

Where Convolutional layers extract featuresfrom images, Pooling layers consolidate the 

featureslearned by CNNs. Its purpose is to gradually shrink the representation’s spatial 

dimension to minimize the number of parameters and computations in the network. 

 

WhyarePoolinglayersneeded? 

ThefeaturemapproducedbythefiltersofConvolutionallayersislocation-dependent. For 

example, If an object in an image has shifted a bit it might not be recognizable by the 

Convolutional layer. So, it means that the feature map records the precise positions offeatures 

in the input. What pooling layers provide is “Translational Invariance” which makes the CNN 

invariant to translations, i.e., even if the input of the CNN is translated, the CNN will still be 

able to recognize the features in the input. 

 

In all cases, poolinghelps to make the representation become approximatelyinvariant 

to smalltranslations of the input. Invariance to translation means that ifwe translate the input 

by a small amount, the values of most of the pooled outputs do not change. 

 

HowdoPoolinglayersachieve that? 

 

A Pooling layer is added after the Convolutional layer(s), as seen in the structure of a 

CNN above. It down samples the output of the Convolutional layers by sliding the filter of 

some size with some stride size and calculating the maximum or average of the input. 

 

Thereare twotypesofpoolingthatare used: 

 
1. Max pooling: This works by selecting the maximum value from every pool. Max Pooling retains 

themost prominentfeatures of the feature map, and the returned image is sharper than the original 

image. 

2. Average pooling: This pooling layer works by getting the average of the pool. Average pooling 

retains theaverage valuesof features of the feature map. It smoothes the image while keeping the 

essence of the feature in an image. 

https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
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TheworkingofPoolingLayersusingTensorFlow.CreateaNumPyarray and reshape it. 

 

MaxPooling 

Create a MaxPool2D layer with pool_size=2 and strides=2. Apply the MaxPool2D 

layer to the matrix, and you will get the MaxPooled output in the tensor form. By applying it 

tothematrix,theMax poolinglayerwillgothroughthematrix bycomputingthemax ofeach 

2×2poolwithajumpof2.Printtheshapeofthetensor.Usetf.squeezetoremovedimensions of size 1 

from the shape of a tensor. 

 

Average Pooling 

Create an AveragePooling2D layer with the same 2 pool_size and strides. Apply the 

AveragePooling2Dlayer tothematrix. Byapplyingit tothematrix,theaveragepoolinglayer will 

go through the matrix by computing the average of 2×2 for each pool with a jump of 2. Print 

the shape of the matrix and Use tf.squeeze to convert the output into a readable form by 

removing all 1 size dimensions. 

 

The GIF here explains how these pooling layers go through the input matrix and 

computes the maximum or average for max pooling and average pooling, respectively. 

https://towardsai.net/p/computer-vision/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd
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GlobalPooling Layers 

Global Pooling Layers often replace the classifier’s fully connected or Flatten layer. 

The model instead ends with a convolutional layer that produces as many feature maps as 

there are target classes and performs global average pooling on each of the feature maps to 

combine each feature map into a single value. 

 

Create the same NumPy array but with a different shape. By keeping the same shape 

as above, the Global Pooling layers will reduce them to one value. 

 

GlobalAverage Pooling 

 

Considering a tensor of shapeh*w*n, the output of the Global Average Pooling layer 

is a single value across h*w that summarizes the presence of the feature. Instead of 

downsizingthepatchesoftheinputfeaturemap,theGlobalAveragePoolinglayerdownsizes the 

whole h*w into 1 value by taking the average. 

 

GlobalMaxPooling 

 

With the tensor of shape h*w*n, the output of the Global Max Pooling layer is a 

single value acrossh*wthat summarizes the presence of a feature. Instead of downsizing the 

patchesoftheinputfeaturemap,theGlobalMaxPoolinglayerdownsizesthe whole h*w into 1 

value by taking the maximum. 

 

TrainingofCNNinTensorFlow 
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The MNIST database (Modified National Institute of Standard Technology 

database) is an extensive database of handwritten digits, which is used for training 

various image processing systems. It was created by "reintegrating" samples from 

the original dataset of the MNIST. 

If we get familiarized with the building blocks of Connects, we can build one 

with TensorFlow. We can use the MNIST dataset for image classification. 

Preparing the data is the same as in the previous tutorial. We can run codeand 

jump directly into the architecture of CNN. 

Here, the code isexecuted in Google Colab(an online editor of machine 

learning).WecangotoTensorFloweditorthroughthebelowlink: 

https://colab.research.google.com 

Theseare thestepsusedtotrainingtheCNN. 

Steps: 

Step 1: Upload Dataset 

Step 2: The Input layer 

Step3:Convolutionallayer 

Step 4: Pooling layer 

Step5:ConvolutionallayerandPoolingLayer 

Step6:Denselayer 

Step7:Logit Layer 

https://colab.research.google.com/
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Step1:UploadDataset 

The MNIST dataset is available with scikit for learning in this URL (Unified 

ResourceLocator).Wecandownloaditandstoreitinourdownloads.We canupload it with 

fetch_mldata ('MNIST Original'). 

Createatest/trainset 

Weneed tosplitthedatasetintotrain_test_split. 

Scalethefeatures 

Finally,wescalethefunctionwiththehelpof MinMaxScaler. 

 

1. importnumpyasnp 

2. importtensorflowastf 

3. fromsklearn.datasetsimportfetch_mldata 

4. #ChangeUSERNAMEbytheusernameofthe machine 

5. ##WindowsUSER 

6. mnist=fetch_mldata('C:\\Users\\USERNAME\\Downloads\\MNISToriginal') 

7. ##MacUser 

8. mnist=fetch_mldata('/Users/USERNAME/Downloads/MNISToriginal') 

9. print(mnist.data.shape) 

10. print(mnist.target.shape) 

11. fromsklearn.model_selectionimporttrain_test_split 
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12. A_train,A_test,B_train,B_test=train_test_split(mnist.data,mnist.target,test_siz 

e=0.2, random_state=45) 

13. B_train= B_train.astype(int) 

14. B_test=B_test.astype(int) 

15. batch_size=len(X_train) 

16. print(A_train.shape,B_train.shape,B_test.shape) 

17. ##rescale 

18. fromsklearn.preprocessingimportMinMaxScaler 

19. scaler=MinMaxScaler() 

20. #Trainthe Dataset 

21. X_train_scaled=scaler.fit_transform(A_train.astype(np.float65)) 

 

1. #testthedataset 

2. X_test_scaled=scaler.fit_transform(A_test.astype(np.float65)) 

3. feature_columns=[tf.feature_column.numeric_column('x',shape=A_train_scale 

d.shape[1:])] 

4. X_train_scaled.shape[1:] 

DefiningtheCNN(ConvolutionalNeuralNetwork) 

CNN uses filters on the pixels of any image to learn detailed patterns comparedto 

global patterns with a traditional neural network. To create CNN, we have to define: 

 

1. A convolutional Layer: Apply the number of filters to the feature map. After 

convolution, we need to use a relay activation function to add non-linearity to the 

network. 

2. Pooling Layer:The next step after the Convention is to downsampling the maximum 

facility. The objective is to reduce the mobility of the feature map to prevent 

overfitting and improve the computation speed. Max pooling is a traditional 

technique, which splits feature maps into subfields and only holds maximum values. 

3. Fully connected Layers:All neurons from the past layers are associated with the 

other next layers. The CNN has classified the label according to the features from 

convolutional layers and reduced with any pooling layer. 

CNNArchitecture 

o ConvolutionalLayer:Itapplies145x5filters(extracting5x5-pixelsub-regions), 
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o Pooling Layer:This will perform max pooling with a 2x2 filter and stride of 2 (which 

specifies that pooled regions do not overlap). 

o ConvolutionalLayer:Itapplies365x5filters,withReLUactivationfunction 

o PoolingLayer:Again,performsmaxPoolingwitha2x2filterandstrideof 2. 

o 1,764 neurons,with the dropout regularization rate of 0.4 (where the probability of 

0.4 that any given element will be dropped in training) 

o Dense Layer (LogitsLayer):Thereare tenneurons, oneforeachdigittargetclass(0- 9). 

ImportantmodulestouseincreatingaCNN: 

 

1. Conv2d().Constructatwo-dimensionalconvolutionallayerwiththenumberoffilters, filter 

kernel size, padding, and activation function like arguments. 

2. max_pooling2d (). Construct a two-dimensional pooling layer using the max-pooling 

algorithm. 

3. Dense().Constructadenselayerwiththehiddenlayersand units 

Wecandefinea functiontobuildCNN. 

The following represents steps to construct every building block before wrapping 

everything in the function. 

 

Step2:Inputlayer 

1. #Inputlayer 

2. defcnn_model_fn(mode,features, labels): 

3. input_layer=tf.reshape(tensor=features["x"],shape=[-1,26,26,1]) 

Weneedtodefineatensorwiththeshapeofthedata.Forthat,wecanuse themodule 

tf.reshape. In this module, we need to declare the tensor to reshapeand to shape the 

tensor. The first argument is the feature of the data, that is defined in the argument 

of a function. 

A picture has a width, a height, and a channel. TheMNISTdataset is a 

monochromic picture with the28x28size. We set the batch size into -1 in the shape 

argument so that it takestheshapeofthefeatures["x"]. Theadvantageisto tunethe batch 

size to hyperparameters. If the batch sizeis 7, the tensor feeds5,488values (28 * 28 * 

7). 

Step3:ConvolutionalLayer 

1. #firstCNNLayer 
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2. conv1=tf.layers.conv2d( 

3. inputs=input_layer, 

4. filters=18, 

5. kernel_size=[7,7], 

6. padding="same", 

7. activation=tf.nn.relu) 

The first convolutional layer has 18 filters with the kernel size of 7x7 with equal 

padding. The same padding has both the output tensor and input tensor have the 

same width and height. TensorFlow will add zeros in the rowsand columns to ensure 

the same size. We use the ReLu activation function. The output size will be [28, 28, 

and 14]. 

Step4:Pooling layer 
 

The next step after the convolutional is pooling computation. The pooling 

computation will reduce the extension of the data. We can use the module 

max_pooling2d with a size of 3x3 and stride of 2. We use the previous layer as input. 

The output size can be [batch_size, 14, 14, and 15]. 

 

1. ##firstPoolingLayer 

2. pool1=tf.layers.max_pooling2d(inputs=conv1,pool_size=[3,3],strides=2) 

Step5:PoolingLayerand SecondConvolutionalLayer 
 

The second CNN has exactly 32 filters, with the output size of [batch_size, 14, 14, 

32]. The size of the pooling layer has the same as ahead, and output shape is 

[batch_size, 14, 14, and18]. 

 

1. conv2= tf.layers.conv2d( 

2. inputs=pool1, 

3. filters=36, 

4. kernel_size=[5,5], 

5. padding="same", 

6. activation=tf.nn.relu) 

7. pool2=tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2). 

Step 6:Fullyconnected (Dense)Layer 
 

We have to define the fully-connected layer. The feature map has to be 

compressed before to be combined with the dense layer. We can use the module 

reshape with a size of 7*7*36. 
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The dense layer will connect1764neurons. We add a ReLu activation function 

and can add a ReLu activation function. We add a dropout regularization term with a 

rateof0.3,meaning30percentoftheweightswillbe0.Thedropouttakesplaceonly along the 

training phase. Thecnn_model_fn()has an argument mode to declare if the model 

needs to trained or to be evaluate. 

 

1. pool2_flat=tf.reshape(pool2, [-1,7*7*36]) 

2. dense=tf.layers.dense(inputs=pool2_flat,units=7*7*36,activation=tf.nn.relu) 

3. dropout=tf.layers.dropout(inputs=dense,rate=0.3,training=mode==tf.esti 

mator.ModeKeys.TRAIN) 

Step7:Logits Layer 
 

Finally,wedefinethelastlayerwiththepredictionofmodel.Theoutputshape is equal 

to the batch size 12, equal to the total number of images in the layer. 

 

1. #LogitLayer 

2. logits=tf.layers.dense(inputs=dropout,units=12) 

We can create a dictionary that contains classes and the possibility of each 

class. The module returns the highest value with tf.argmax() if the logit layers. The 

softmax function returns the probability of every class. 

PopularCNNarchitectures-VGG,GoogleNet,ResNet: 
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TypesofConvolutionalNeuralNetworkAlgorithms 

 
LeNet 

 
LeNet is a pioneering CNN designed for recognizing handwritten characters. It was proposed by 

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner in the late 1990s. LeNet consists of a 

series of convolutional and pooling layers, as well as a fully connected layer and softmax classifier. It was 

among the first successful applications of deep learning for computer vision. It has been used by banks to 

identify numbers written on cheques in grayscale input images. 

 

 

VGG 

 
VGG (Visual GeometryGroup) is a research group within the Department of Engineering Science 

at the Universityof Oxford. The VGG group is well-known for its work in computer vision, particularlyin 

the area of convolutional neural networks (CNNs). 

 

One of the most famous contributions from the VGG group is the VGG model, also known as 

VGGNet. The VGG model is a deep neural network that achieved state-of-the-art performance on the 

ImageNet Large Scale Visual Recognition Challenge in 2014, and has been widely used as a benchmarkfor 

image classification and object detection tasks. 

 

The VGG model is characterized by its use of small convolutional filters (3×3) and deep 

architecture (up to 19 layers), which enables it to learn increasingly complex features from input images. 

The VGG model also uses max pooling layers to reduce the spatial resolution of the feature maps and 

increase the receptive field, which can improve its ability to recognize objects of varying scales and 

orientations. 

 

The VGG model has inspired many subsequent research efforts in deep learning, including the 

development of even deeper neural networks and the use of residual connections to improve gradient flow 

and training stability. 

 

 

ResNet 

 
ResNet (short for “Residual Neural Network”) is a family of deep convolutional neural networks 

designed to overcome the problem of vanishing gradients that are common in very deep networks. Theidea 

behind ResNet is to use “residual blocks” that allow for the direct propagation of gradients throughthe 

network, enabling the training of very deep networks. 
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A residual block consists of two or more convolutional layers followed by an activation function, 

combined with a shortcut connection that bypasses the convolutional layers and adds the original input 

directly to the output of the convolutional layers after the activation function. 

 

This allows the network to learn residual functions that represent the difference between the 

convolutional layers’ input and output, rather than trying to learn the entire mapping directly. The use of 

residual blocks enables the training of very deep networks, with hundreds or thousands of layers, 

significantly alleviating the issue of vanishing gradients. 

 

 

GoogLeNet 

 
GoogLeNet is a deep convolutional neural network developed by researchers at Google. It was 

introduced in 2014 and won the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)that year, 

with a top-five error rate of 6.67%. 

 

GoogLeNet is notable for its use of the Inception module, which consists of multiple parallel 

convolutional layers with different filter sizes, followed by a pooling layer, and concatenation of the 

outputs. This design allows the network to learn features at multiple scales and resolutions, while keeping 

the computational cost manageable. The network also includes auxiliary classifiers at intermediate layers, 

which encourage the network to learn more discriminative features and prevent overfitting. 

 

GoogLeNet builds upon the ideas of previous convolutional neural networks, including LeNet, 

which was one of the first successful applications of deep learning in computer vision. However, 

GoogLeNet is much deeper and more complex than LeNet. 
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Dropout: 
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The term “dropout” refers to dropping out the nodes (input and hidden 

layer) in a neural network (as seen in Figure 1). All the forward and backwards 

connections with a dropped node are temporarily removed, thus creating a 

newnetworkarchitectureoutoftheparentnetwork.Thenodesaredroppedby a 

dropout probability of p. 

 

Considergiveninputx:{1,2,3,4,5}tothefullyconnectedlayer.Wehave a 

dropout layer with probability p = 0.2 (or keep probability = 0.8). During the 

forward propagation (training) from the input x, 20% of the nodes would be 

dropped, i.e. the x could become {1, 0, 3, 4, 5} or {1, 2, 0, 4, 5} and so on. 

Similarly, it applied to the hidden layers. 

 

For instance, if the hidden layers have 1000 neurons (nodes) and a 

dropout is applied with drop probability = 0.5, then 500 neurons would be 

randomly dropped in every iteration (batch). 

 

Generally, for the input layers, the keep probability, i.e. 1- drop 

probability, is closer to 1, 0.8 being the best as suggested by the authors. For 

the hidden layers, the greater the drop probability more sparse the model, 

where 0.5 is the most optimised keep probability, that states dropping 50% of 

the nodes. 

 

HowdoesDropoutsolvetheOverfittingproblem? 

In the overfitting problem, the model learns the statistical noise. To be 

precise, the main motive of training is to decrease the loss function, given all 

the units (neurons). So in overfitting, a unit may change in a way that fixes up 

themistakesoftheother units.Thisleadstocomplexco-adaptations,whichin 
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turn leads to the overfitting problem because this complex co-adaptation fails 

to generalise on the unseen dataset. 

 

Now, if we use dropout, it prevents these units to fix up the mistake of 

otherunits,thuspreventingco-adaptation,asineveryiterationthepresenceof a unit 

is highly unreliable. So, by randomly dropping a few units (nodes), it forces the 

layers to take more or less responsibility for the input by taking a probabilistic 

approach. 

 

This ensures that the model is getting generalised and hence reducing 

the overfitting problem. 

 

Figure2:(a)Hiddenlayerfeatureswithoutdropout; 

(b)Hiddenlayerfeatureswithdropout 

 

Fromfigure2,wecaneasilymakeoutthatthehiddenlayerwithdropout is 

learning more of the generalised features than the co-adaptations in the layer 

without dropout. It is quite apparent, that dropout breaks such inter-unit 

relations and focuses more on generalisation. 
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DropoutImplementation 
 

 

Figure3:(a)Aunit(neuron)duringtrainingispresentwitha probability p and is 

connected to the next layer with weights ‘w’; 

(b) A unitduring inference/prediction is always present and is 

connected to the next layer with weights, ‘pw’ 

 

In the original implementation of the dropout layer, during training, a 

unit (node/neuron) in a layer is selected with a keep probability (1-drop 

probability). This creates a thinner architecture in the given training batch, and 

every time this architecture is different. 

 

Inthestandardneuralnetwork,duringtheforwardpropagationwehave the 

following equations: 

 

Figure4:Forwardpropagationofastandardneuralnetwork 

 

where: 

z:denotethevectorofoutputfromlayer(l+1)beforeactivation y: 

denote the vector of outputs from layer l 

w:weightofthelayerl b: 

bias of the layer l 
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Further, with the activation function, z is transformed into the output for 

layer (l+1). Now, if we have a dropout, the forward propagation equations 

change in the following way: 

 

 

Figure5:Forwardpropagationofalayerwithdropout 

So, before we calculatez,the input to the layer is sampled and multiplied 

element-wise with the independent Bernoulli variables.rdenotes the Bernoulli 

random variables each of which has a probability p of being 1. 

Basically,racts as a mask to the input variable, which ensures only a few 

unitsarekeptaccordingtothekeepprobabilityofadropout.Thisensuresthat we 

have thinned outputs “y(bar)”, which is given as an input to the layer during 

feed-forward propagation. 

 

Training Deep Neural Networks is a difficult task that involves several 

problems to tackle. Despite their huge potential, they can be slow and be 

prone to overfitting. Thus, studies on methods to solve these problems are 

constant in Deep Learning research. 

Batch Normalization – commonly abbreviated as Batch Norm – is one of 

thesemethods.Currently,itisawidelyusedtechniqueinthefieldofDeep 
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Learning.ItimprovesthelearningspeedofNeuralNetworksandprovides regularization, 

avoiding overfitting. 

 

Normalization: 

Normalization is a pre-processing technique used to standardize data.In 

other words, having different sources of data inside the same range. Not 

normalizing the data before training can cause problems in our network, making it 

drastically harder to train and decrease its learning speed. 

For example, imagine we have a car rental service. Firstly, we want to 

predict a fair price for each car based on competitors’ data. We have two features 

per car: the age in years and the total amount of kilometers it has been driven for. 

These can have very different ranges, ranging from 0 to 30 years, while distance 

couldgo from0up tohundredsofthousandsofkilometers.Wedon’twantfeatures to 

have these differences in ranges, as the value with the higher range might bias our 

models into giving them inflated importance. 

There are two main methods to normalize our data. The moststraightforward 

method is to scale it to a range from 0 to 1. The data point to normalize,the mean of 

the data set,the highest value, andthe lowest value. This technique is generally used 

in the inputs of the data. The non- normalized data points with wide ranges can 

cause instability in Neural Networks. The relatively large inputs can cascade down 

to the layers, causing problems such as exploding gradients. 

Theother techniqueused to normalize datais forcing thedatapoints to have a 

mean of 0 and a standard deviation of 1, using the following formula: 

 

beingthe data point to normalize,the mean of the data set, andthe standard 

deviation of the data set. Now, each data point mimics a standard normal 
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distribution.Havingallthefeaturesonthisscale,noneofthemwillhaveabias, and 

therefore, our models will learn better. 

InBatchNorm,weusethislasttechniquetonormalizebatchesofdata inside 

the network itself. 

 

BatchNormalization 

Batch Norm is a normalization technique done between the layers of a 

NeuralNetwork instead of in the raw data. It isdone along mini-batches instead 

of the full data set. It serves to speed up training and use higher learning rates, 

making learning easier. 

Following thetechniqueexplained in theprevioussection,wecandefinethe 

normalization formula of Batch Norm as: 

 

beingmzthe mean of the neurons’ output and szthe standard deviation of the 

neurons’ output. 

 

HowIs ItApplied? 

Thefollowingimagerepresentsaregularfeed-forwardNeural Network:are 

the inputs,the output of the neurons,the output of the activation functions, 

andthe output of the network: 
 

https://www.baeldung.com/wp-content/uploads/sites/4/2020/10/neural-network.png
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Batch Norm–in the image represented with a red line–is applied to the 

neurons’outputjustbeforeapplyingtheactivationfunction.Usually,aneuronwithout 

BatchNormwouldbecomputedasfollows: 

 

 
beingthelineartransformationofthe neuron, theweightsoftheneuron, 

thebiasoftheneurons,and theactivationfunction.Themodellearnsthe 

parameters and. Adding Batch Norm, it looks as: 

 

 
being the output of Batch Norm, the mean of the neurons’ 

output,thestandarddeviationoftheoutputoftheneurons,and  learningparametersof 

Batch Norm. Note that the bias of the neurons () is removed. This is because as we 

subtractthemean ,anyconstantoverthevaluesof z–suchas b–canbe ignored as it will 

be subtracted by itself. 

The parameters and shift the mean and standard deviation, 

respectively. Thus, the outputs of Batch Norm over a layer result in a distribution 

withameanandastandarddeviationof .Thesevaluesarelearnedover epochs and the 

other learning parameters, such as the weights of the neurons, aiming to decrease 

the loss of the model. 

 

 

DataAugmentation: 

 
Algorithms can use machine learning to identify different objects and classify 

them for image recognition. This evolving technology includes using Data 

Augmentation to produce better-performing models. Machine learning models need 

to identify an object in any condition, even if it is rotated, zoomed in, or a grainy 

image. Researchers needed an artificial way of adding training data with realistic 

modifications. 

 
Data augmentation is the addition of new data artificially derived from existing 

trainingdata.Techniquesinclude resizing, flipping, rotating, cropping, padding,etc. It 
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helps to address issues like overfitting and data scarcity, and it makes the model 

robust with better performance. Data Augmentation provides many possibilities to 

alter the original image and can be useful to add enough data for larger models. 

 

DataAugmentationinaCNN: 

Convolutional Neural Networks (CNNs) can do amazing things if there is 

sufficient data. However, selecting the correct amount of training data for allof 

the features that need to be trained is a difficult question. If the user does not 

have enough, the networkcanoverfiton the trainingdata.Realisticimages 

contain a variety of sizes, poses, zoom, lighting, noise, etc. 

To make the network robust to these commonly encountered factors, 

the method of Data Augmentation is used. By rotating input images todifferent 

angles, flipping images along different axes, or translating/cropping the images 

the network will encounter these phenomena during training. 

As more parameters are added to a CNN, it requires more examples to 

show to the machine learning model. Deeper networks can have higher 

performance, but the trade-off is increased training data needs and increased 

training time. 
 
 

 

DataAugmentationTechniques DataAugmentationFactor 

Flipping 2-4x(ineachdirection) 

Rotation Arbitrary 

Translation Arbitrary 

Scaling Arbitrary 

SaltandPepperNoise Addition Atleast2x(dependsontheimplementation) 
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StellathePuppysittingonacarseat StellathePuppyFlippedovertheverticalaxis. 

Atableoutliningthefactorbywhichdifferentmethodsmultiplytheexistingtraining data. 

DataAugmentationTechniques: 

Some libraries use Data Augmentation by actually copying the training 

images and saving these copies as part of the total. This produces new training 

examples to feed to the machine learning model. Other libraries simply define 

a set of transformsto perform on the input training data. These transforms are 

appliedrandomly.Asa result,the space the optimizer issearchingis increased. 

Thishastheadvantagethatitdoesnotrequireextra diskspacetoaugmentthe 

training. 

ImageDataAugmentationinvolvesthetechniquessuchas 

a) Flips: 

By Flipping images, the optimizer will not become biased that particular 

features of an image are only on one side. To do this augmentation, theoriginal 

training image is flipped vertically or horizontally over one axis of the image. As 

a result, the features continually change directions. 
 

 

Flipping is a similar augmentation as rotation, however, it produces 

mirrorimages.Aparticularfeaturesuchastheheadof apersoneitherstayson top, 

on the left, on the right, or at the bottom of the image. 

b) Rotation: 

Rotation is an augmentation that is commonly performed at 90-degree 

anglesbutcanevenhappenatsmallerorminuteanglesiftheneedformore 
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data is great. For rotation, the background color is commonly fixed so that it 

can blend when the image is rotated. Otherwise, the model can assume the 

background change is a distinct feature. This works best when the background 

is the same in all rotated images. 
 

 StellathePuppysittingonacarseatStella thePuppyrotated90 degrees. 

 

Specific features move in rotations. For example, the head of a person 

will be rotated 10, 22.7, or -8 degrees. However, rotation does not change the 

orientation of the feature and will not produce mirror images like flips. This 

helps models not consider the angle to be a distinct feature of the human. 

c) Translation: 

Translation of an image means shifting the main object in the image in 

various directions. For example, consider a person in the canter with all their 

parts visible in the frame and take it as a base image. Next, shift the person to 

one corner with the legs cut from the bottom as one translated image. 
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d) Scaling: 

 
Scaling provides more diversity in the training data of a machine learning 

model. Scaling the image will ensure that the object is recognized by the network 

regardlessof howzoomedin oroutthe image is. Sometimes the object istinyin the 

center. Sometimes, the object is zoomed in the image and even cropped at some 

parts. 

e) Salt andPepperNoiseAddition 

 
Salt and pepper noise addition is the addition of black and white dots (looking 

like salt and pepper) to the image. This simulates dust and imperfections in real 

photos. Even if the cameraof thephotographeris blurryorhasspots on it, the image 

would be better recognized by the model. The training data set is augmented to train 

the model with more realistic images. 

 

 

onlypartlyvisible. 
 

 

 
 Stella thePuppy sitting onacarseat Stella thePuppyscaleduptobeeven largerthan 

sheis inreallife. 
 

 

 
 StellathePuppysittingonacarseat StellathePuppywithSaltandPeppernoiseadded 

totheimage 

StellathePuppysittingonacarseat Stella thePuppytranslatedandcroppedsoshe’s 
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BenefitsofDataAugmentationinaCNN  

 
• Prediction improvement in a model becomes more accurate because 

DataAugmentationhelpsinrecognizingsamplesthemodelhasnever seen 

before. 

• There is enough data for the model to understand and train all the 

availableparameters.Thiscanbeessentialinapplicationswheredata 

collection is difficult. 

• HelpspreventthemodelfromoverfittingduetoDataAugmentation 

creating more variety in the data. 

• Can save timeinareaswherecollectingmoredata istime-consuming. 

• Can reducethecostrequiredforcollectingavarietyofdataifdata 

collection is costly. 

 
 

DrawbacksofDataAugmentation: 

 
Data Augmentation is not useful when the variety required by the application 

cannot be artificially generated. For example, if one were training a bird recognition 

model and the training data contained only red birds. The training data could be 

augmented by generating pictures with the color of the bird varied. 

 
However, the artificial augmentation method may not capture the realisticcolor 

details of birds when there is not enough variety of data to start with. For example, if 

the augmentation method simply varied red for blue or green, etc. Realistic non-red 

birds may have more complex color variations and the model may fail to recognize 

the color. Having sufficient data is still important if one wants Data Augmentation to 

work properly. 
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UNIT-III 

RECURRENT NEURAL NETWORK (RNN): Introduction to 

RNNs and their applications in sequential data analysis, Back 

propagation through time (BPTT), Vanishing Gradient Problem, 

gradient clipping Long Short-Term Memory (LSTM) Networks, 

Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs. 

IntroductiontoRNNsandtheirapplicationsin sequentialdataanalysis: 

RecurrentNeuralNetwork (RNN) worksbetterthanasimpleneural network

 when data is sequential like Time-Series data and text data. 

 

ADeepLearningapproachformodellingsequentialdataisRNN: 

RNNs were the standard suggestion for working with sequential data 

beforetheadventofattentionmodels.Specificparametersforeach 
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element of the sequence may be required by a deep feedforward model. It 

may also be unable to generalize to variable-length sequences. 
 

 
Recurrent Neural Networks use the same weights for each elementof 

the sequence, decreasing the number of parameters and allowing the 

model to generalize to sequences of varying lengths. RNNs generalize to 

structured data other than sequential data, such as geographical or 

graphical data, because of its design. 

Recurrent neural networks, like many other deep learningtechniques, 

are relatively old. They were first developed in the 1980s, but we didn’t 

appreciate their full potential until lately. The advent of long short- term 

memory (LSTM) in the 1990s, combined with an increase in computational 

power and the vast amounts of data that we now have todeal with, has 

really pushed RNNs to the forefront. 

WhatisaRecurrentNeuralNetwork(RNN)? 

Neural networks imitate the function of the human brain in the fieldsof 

AI, machine learning, and deep learning, allowing computer programs to 

recognize patterns and solve common issues. 

RNNs are a type of neural network that can be used to model 

sequence data. RNNs, which are formed from feedforward networks, are 

similartohumanbrainsintheirbehaviour.Simplysaid,recurrentneural 
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networkscananticipatesequentialdatainawaythatotheralgorithmscan’t. 

 

All of the inputs and outputs in standard neural networks are 

independent of one another, however in some circumstances, such aswhen 

predicting the next word of a phrase, the prior words are necessary, and so 

the previous words must be remembered. As a result, RNN was created, 

which used a Hidden Layer to overcome the problem. The most important 

component of RNN is the Hidden state, which remembersspecific 

information about a sequence. 

RNNs have a Memory that stores all information about the 

calculations. It employs the same settings for each input since it produces 

the same outcome by performing the same task on all inputs or hidden 

layers. 

TheArchitectureofaTraditionalRNN 

RNNs are a type of neural network that has hidden states and allows 

past outputs to be used as inputs. They usually go like this: 
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RNN architecture can vary depending on the problem you’re trying to 

solve. From those with a single input and output to those with many (with 

variations between). 

BelowaresomeexamplesofRNNarchitectures. 

 
• One To One:There is only one pair here. A one-to-one architectureis 

used in traditional neural networks. 

• One To Many:A single input in a one-to-many network might resultin 

numerous outputs. One too many networks are used in the 

production of music, for example. 
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• Many To One: In this scenario, a single output is produced by 

combining many inputs from distinct time steps. Sentiment analysis 

andemotion identification usesuchnetworks,in which theclass label is 

determined by a sequence of words. 

• Many To Many:Formany tomany,therearenumerousoptions. Two 

inputs yield three outputs. Machine translation systems, such as 

English to French or vice versa translation systems, use many to 

many networks. 

HowdoesRecurrentNeuralNetworkswork? 

The information in recurrent neural networks cycles through a loop to 

the middle-hidden layer. 
 

 
The input layer xreceives and processes the neural network’s input 

before passing it on to the middle layer. 

Multiple hidden layers can be found in the middle layer h, each with 

its own activation functions,weights,and biases.Youcanutilizearecurrent 

neural network if the various parameters of different hidden layers are not 

impacted by the preceding layer, i.e. There is no memory in the neural 

network. 



B.Tech–CSE R-20 

DeepLearning 

 

 

The different activation functions, weights, and biases will be 

standardized by the Recurrent Neural Network, ensuring that each hidden 

layer has the same characteristics. Rather than constructing numerous 

hidden layers, it will create only one and loop over it as many times as 

necessary. 

CommonActivationFunctions: 

A neuron’s activation function dictates whether it should be turned on 

or off. Nonlinear functions usually transform a neuron’s output to a number 

between 0 and 1 or -1 and 1. 

 
 
 

 

 
Thefollowingaresomeofthemostcommonlyutilizedfunctions: 

 
• Sigmoid:Theformula g(z)=1/(1+e^-z)is usedtoexpress this. 

• Tanh:Theformula g(z)=(e^-z–e^-z)/(e^-z+e^-z)isusedto express this. 

• ReLu:The formula g(z)=max(0,z)is usedto express this. 
 

 

ApplicationsofRNNNetworks: 
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1. MachineTranslation: 

RNN can be used to build a deep learning model that can translatetext 

from one language to another without the need for human intervention. You 

can, for example, translate a text from your native language to English. 

 

 

2. Text Creation: 

RNNs can also be used to build a deep learning model for text 

generation. Based on the previous sequence of words/characters used in the 

text, a trained modellearns the likelihoodofoccurrenceofa word/character. A 

model can be trained at the character, n-gram, sentence, or paragraph level. 

 

 

3. Captioningofimages: 

The process of creating text that describes the content of an image is 

known as image captioning. The image's content can depict the object as 

well as the action of the object on the image. In the image below, for 

example,thetraineddeep learning modelusingRNNcandescribetheimage as 

"A lady in a green coat is reading a book under a tree.” 

 

 

4. RecognitionofSpeech: 

This is also known asAutomatic Speech Recognition (ASR), and it is 

capable of converting human speech into written or text format. Don't mix 

up speech recognition and voice recognition; speech recognition primarily 

focuses on converting voice data into text, whereas voice recognition 

identifies the user's voice. 
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Speech recognition technologies that are used on a daily basis by 

various users include Alexa, Cortana, Google Assistant, and Siri. 

 

 

 

5. ForecastingofTimeSeries: 

After being trained on historical time-stamped data, an RNN can be 

used to create a time series prediction model that predicts the future 

outcome. The stock market is a good example. 

 

For example, Stock market data can be used to build a machine 

learning model that can forecast future stock prices based on what the model 

learns from historical data. This can assist investors in making data-driven 

investment decisions. 

 

RecurrentNeuralNetworkVsFeedforwardNeuralNetwork: 

A feed-forward neural network has only one route ofinformation 

flow: from the input layer to the output layer, passing through the hidden 

layers. The data flows across the network in a straight route, never going 

through the same node twice. 

The information flow between an RNN and a feed-forward 

neural network is depicted in the two figures below. 
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BackpropagationThroughTime-RNN: 
Backpropagation is a training algorithm that we use for training neural 

networks. When preparing a neural network, we are tuning the network's 

weights to minimize the error concerning the available actual values with the 

help of the Backpropagation algorithm. Backpropagation is a supervised learning 

algorithm as we find errors concerning already given values. 

The backpropagation training algorithm aims to modify the weights of a 

neural network to minimize the error of the network results compared to some 

expected output in response to corresponding inputs. 

 

 

 

 
Feed-forward neural networks are poor predictions of what will 

happen next because theyhave no memoryof the information theyreceive. 

Because it simply analyses the current input, a feed-forward network hasno 

idea of temporal order. Apart from its training, it has no memory of what 

transpired in the past. 

The information is in an RNN cycle via a loop. Before making a 

judgment, it evaluates the current input as well as what it has learned from 

past inputs. A recurrent neural network, on the other hand, may recall due 

to internal memory. It produces output, copies it, and then returns it to the 

network. 
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ThegeneralalgorithmofBackpropagationisasfollows: 
1. We first train input data and propagate it through the network to get 

an output. 
2. Compare the predicted outcomes to the expected results and calculate 

the error. 
3. Then,wecalculatethederivativesoftheerrorconcerningthenetwork 

weights. 
4. We use these calculated derivatives to adjust the weights to minimize 

the error. 
5. Repeattheprocessuntiltheerrorisminimized. 

In simple words, Backpropagation is an algorithm where the informationof 

cost function is passed on through the neural network in the backward direction. 

The Backpropagation training algorithm is ideal for training feed- forward neural 

networks on fixed-sized input-output pairs. 

 
UnrollingTheRecurrentNeuralNetwork 

Recurrent Neural Network deals with sequential data. RNN predicts 

outputs using not only the current inputs but also by considering those that 

occurred before it. In other words, the current outcome depends on the current 

production and a memory element (which evaluates the past inputs). 

 
ThebelowfiguredepictsthearchitectureofRNN. 

 
 
 
 
 
 
 
 
 

 
We use Backpropagation for training such networks with a slight change. 

We don't independently train the network at a specific time "t." We train it at 

aparticulartime"t"aswellasallthathashappenedbeforetime"t"liket-1,t-2,t-3. 

S1, S2, S3are the hidden states at time t1, t2, t3, respectively, andWs is 

theassociated weight matrix. 
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BackpropagationThroughTime 

Ws, Wx, and Wy do not change across the timestamps, which means 

thatfor all inputs in a sequence, the values of these weights are the same. 

Theerrorfunctionisdefinedas: 

 
Thepointstoconsiderare: 

Whatisthetotallossforthisnetwork? 

Howdoweupdatetheweights,Ws,Wx,andWy? 

The total loss we have to calculate is the sum in overall timestamps, i.e., 

E0+E1+E2+E3+...Now tocalculatetheerrorgradientconcerning Ws,Wx,andWy. It is 

relatively easy to calculate the loss derivative concerning Wy as the derivative 

only depends on the current timestamp values. 

 
Formula: 

 

 

To calculate the error, we take the output and calculate its 

errorconcerning the actual result, but we have multiple outputs at each 

timestamp.Thus, the regular Backpropagation won't work here. Therefore, we 

modify thisalgorithm and call the new algorithm as Backpropagation through 

time. 
 

 

 
 

x1, x2, x3are the inputs at time t1, t2, t3, respectively, and Wxis the associated 

weight matrix. 

Y1, Y2, Y3are the outcomes at time t1, t2, t3, respectively, and Wyis the 

associated weight matrix. 

At time t0, we feed input x0 to the network and output y0. At time t1, we 

provideinputx1tothenetworkandreceiveanoutputy1.Fromthefigure,wecan see 

that to calculate the outcome. The network uses input x and the cell state from 

the previous timestamp. To calculate specific Hidden state and output at each 

step, here is the formula: 
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ThencalculatingthederivativeoflossconcerningWsandWx,becomescomplex. 

Formula: 
 
 

 
The value of s3depends on s2, which is a function of Ws. Therefore, we 

cannot calculate the derivative of s3, taking s2as constant. In RNN networks, the 

derivative has two parts, implicit and explicit. We assume all other inputs as 

constant in the explicit part, whereas we sum over all the indirect paths in the 

implicit part. 

 
 
 

 
Thegeneralexpressioncanbewrittenas: 

 
 

 
Similarly,forWx,itcanbewrittenas: 

 
 

 
Now that we have calculated allthree derivatives,we can easilyupdate the 

weights. This algorithm is known as Backpropagation through time (BPTT), aswe 

used values across all the timestamps to calculate the gradients. 

Thealgorithmataglance: 

• Wefeedasequenceoftimestampsofinputandoutputpairstothe network. 

• Then,weunrollthenetworkthencalculateandaccumulateerrors across 

each timestamp. 
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• Finally,werollupthenetworkandupdateweights. 

• Repeattheprocess. 

Limitationsof BPTT: 
BPTT has difficulty with local optima. Local optima are a more significant 

issue with recurrent neural networks than feed-forward neural networks. The 

recurrent feedback in such networks creates chaotic responses in the error 

surface,which causeslocal optima to occur frequentlyandinthe wrong locations 

on the error surface. 

When using BPTT in RNN, we face problems such as exploding gradient 

and vanishing gradient. To avoid issues such as exploding gradient, we use a 

gradient clipping method to check if the gradient value is greater than the 

threshold or not at each timestamp. If it is, we normalize it. This helps to tackle 

exploding gradient. 

We can use BPTT up to a limited number of steps like 8 or 10. If we 

backpropagate further, the gradient becomes too negligible and is a Vanishing 

gradient problem. To avoid the vanishing gradient problem, some of the possible 

solutions are: 

• Using ReLU activation function in place of tanh or sigmoid activation 

function. 

• Properinitializingthe weightmatrixcanreducetheeffectofvanishing 

gradients. For example, using an identity matrix helps us tackle this 

problem. 

• UsinggatedcellssuchasLSTMorGRUs. 

VanishingGradientProblem: 

 
Thegradient descentalgorithmfindstheglobal minimumof thecostfunctionthat is 

going to be an optimal setup for the network. Information travels through the neural 

network from input neurons to the output neurons, while the error is calculated and 

propagated back through the network to update the weights. 

ItworksquitesimilarlyforRNNs,butadditionaltasksinclude: 

https://en.wikipedia.org/wiki/Gradient_descent


B.Tech–CSE R-20 

DeepLearning 

 

 

• Firstly, information travels through time in RNNs, which means that 

informationfromprevioustimepointsisusedasinputforthenexttime points. 

• Secondly,wecancalculatethecostfunction,ortheerror,ateachtimepoint. 

 

Basically, during the training, your cost function compares your outcomes (red 

circles on the image below) to your desired output. As a result, you have these values 

throughout the time series, for every single one of these red circles. 
 

 

 

 

The focus is on one error term et. We calculate the cost function et and then 

propagate the cost function back through the network because of the need to updatethe 

weights. 

Essentially, every single neuron that participated in the calculation of the 

output, associated with this cost function, should have its weight updated in order to 

minimize that error. And the thing with RNNs is that it’s not just the neurons directly 

belowthisoutputlayer thatcontributedbutall of theneuronsfarbackintime.So, you have 

to propagate all the way back through time to these neurons. 

The problem relates to updating wrec (weight recurring) – the weight that isused 

to connect the hidden layers to themselves in the unrolled temporal loop. 

For instance, to get from xt-3 to xt-2 we multiply xt-3 by wrec. Then, to get from 

xt-2 to xt-1 we again multiply xt-2 by wrec. So, we multiply with the same exact weight 

multipletimes, andthisiswherethe problemarises:when we multiplysomethingbya small 

number, the value decreases very quickly. 
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As we know, weights are assigned at the start of the neural network with the 

random values, which are close to zero, and from there the network trains them up. 

But, when you start with wrec close to zero and multiply xt, xt-1, xt-2, xt-3, … by this 

value, your gradient becomes less and less with each multiplication. 
 

 

 

 

 

Whatdoesthismeanforthenetwork? 

The lower the gradient is, the harder it is for the network to update the weights 

and the longer it takes to get to the final result. 

For instance, 1000 epochs might be enough to get the final weight for the time 

point t, but insufficient for training the weights for the time point t-3 due to a verylow 

gradient at this point. However, the problem is not only that half of the network is not 

trained properly. 

The output of the earlier layers is used as the input for the further layers. Thus, 

the training for the time point t is happening all along based on inputs that are coming 

fromuntrained layers. So, because of the vanishing gradient, the whole network is not 

being trained properly. 

To sum up, if wrec is small, you have vanishing gradient problem, and if wrec 

is large, you have exploding gradient problem. For the vanishing gradient problem,the 

further you go through the network, the lower your gradient is and the harder it is to 

train the weights, which has a domino effect on all of the further weightsthroughout 

the network. 
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That was the main roadblock to using Recurrent Neural Networks. However, 

the possible solutions to this problem are as follows: 

Solutionstothevanishinggradientproblem 

Incaseofexplodinggradient,youcan: 

 

• Stopbackpropagatingafteracertainpoint,whichisusuallynotoptimal because not 

all of the weights get updated. 

• Penalizeorartificiallyreducegradient. 

• Putamaximumlimitonagradient. 

 

 

Incaseofvanishinggradient,youcan: 

 

• Initializeweightssothatthepotentialforvanishinggradientisminimized. 

• HaveEchoStateNetworksthataredesignedtosolvethevanishinggradient problem. 

• HaveLongShort-TermMemoryNetworks(LSTMs). 

 

GradientclippingLongShort-TermMemory(LSTM)Networks: 

Training a neural network can become unstable given the choice of error 

function, learning rate, or even the scale of the target variable. Large updates to 

weightsduringtrainingcancausea numericaloverfloworunderflowoften referred to as 

“Exploding Gradients.” 

The problem of exploding gradients is more common with recurrent neural 

networks, such as LSTMs given the accumulation ofgradients unrolled overhundreds 

of input time steps. 

A common and relatively easy solution to the exploding gradients problem isto 

change the derivative of the error before propagating it backward through the network 

and using it to update the weights. Two approaches include rescaling the gradients 

given a chosen vector norm and clipping gradient values that exceed a preferred range. 

Together, these methods are referred to as “Gradient Clipping.” 

 
• Trainingneuralnetworkscanbecomeunstable,leadingtoanumerical overflow 

or underflow referred to as exploding gradients. 
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• The training process can be made stable by changing the error gradients 

either by scaling the vector norm or clipping gradient values to a range. 

• How to update anMLP model for aregression predictive modeling problem 

with exploding gradients to have a stable training process using gradient 

clipping methods? 

 

ExplodingGradientsandClipping 

Neural networks are trained using the stochastic gradient descentoptimization 

algorithm. This requires first the estimation of the loss on one or more training 

examples, then the calculation of the derivative of the loss, which is propagated 

backward through the network in order to update the weights. Weights are updated 

using a fraction of the back propagated error controlled by the “LearningRate”. 

 
It is possible for the updates to the weights to be so large that the weights 

either overflow or underflow their numerical precision. In practice, the weights can 

take on the value of an “NaN” or “Inf” when they overflow or underflow and for 

practical purposes the network will be useless from that point forward, forever 

predicting NaN values as signals flow through the invalid weights. 

 
The difficulty that arises is that when the parameter gradient is very large, a 

gradient descent parameter update could throw the parameters very far, into aregion 

where the objective function is larger, undoing much of the work that hadbeen done 

to reach the current solution. 

 
The underflow or overflowof weights generally refers to asan instability of the 

network training process and is known by the name “exploding gradients” as the 

unstable training process causes the network to fail to train in such a way that the 

model is essentially useless. 

In a given neural network, such as a Convolutional Neural Network or 

Multilayer Perceptron, this can happen due to a poor choice of configuration. Some 

examples include: 

 
• Poorchoiceoflearningratethatresultsinlargeweight updates. 

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
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• Poor choice of data preparation, allowing large differences in the target 

variable. 

• Poorchoiceoflossfunction,allowingthecalculationof largeerrorvalues. 

Exploding gradients is also a problem in recurrent neural networks such as the 

LongShort-TermMemorynetworkgiventheaccumulationoferrorgradientsin the unrolled 

recurrent structure. 

Exploding gradients can be avoided in general by careful configuration of the 

networkmodel,suchaschoiceofsmalllearningrate,scaledtargetvariables,and astandard 

loss function. Nevertheless, exploding gradients may still be an issue with recurrent 

networks with a large number of input time steps. 

 

One difficulty when training LSTM with the full gradient is that the derivatives 

sometimes become excessively large, leading to numerical problems. To prevent 

this, [we] clipped the derivative of the loss with respect to the network inputs to the 

LSTM layers (before the sigmoid and tanh functions are applied) to lie within a 

predefined range. 

 
A common solution to exploding gradients is to change the error derivative 

before propagating it backward through the network and using it to update the 

weights. By rescaling the error derivative, the updates to the weights will also be 

rescaled, dramatically decreasing the likelihood of an overflow or underflow. 

 
Therearetwo mainmethodsforupdatingtheerrorderivativeasfollows: 

 
• GradientScaling. 

• GradientClipping. 

Gradient scaling involves normalizing the error gradient vector such thatvector 

norm (magnitude) equals a defined value, such as 1.0. One simplemechanism to 

deal with a sudden increase in the norm of the gradients is to rescale them whenever 

they go over a threshold 

Gradient clipping involves forcing the gradient values (element-wise) to a 

specific minimum or maximum value if the gradient exceeded an expected 

range.Together, these methods are often simply referred to as “gradient clipping.” 

https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
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When the traditional gradient descent algorithm proposes to make a verylarge 

step, the gradient clipping heuristic intervenes to reduce the step size to be small 

enough that it is less likely to go outside the region where the gradientindicates the 

direction of approximately steepest descent. It is a method that only addresses the 

numerical stability of training deep neural network models and does not offer any 

general improvement in performance. 

 
The value for the gradient vector norm or preferred range can be configuredby 

trial and error, by using common values used in the literature or by first observing 

common vector norms or ranges via experimentation and then choosing a sensible 

value. 

 
Experimental analysis reveals that for a given task and model size, training is 

not very sensitive to this [gradient norm] hyperparameter and the algorithm behaves 

well even for rather small thresholds. 

 
It is common to use the same gradient clipping configuration for all layers in 

the network. Nevertheless, there are examples where a larger range of error 

gradients are permitted in the output layer compared to hidden layers. 

 
The output derivatives […]were clipped in the range [−100, 100], and the LSTM 

derivatives were clipped in the range [−10, 10]. Clipping the output gradients proved 

vital for numerical stability; even so, the networks sometimes had numerical 

problems late on in training, after they had started overfitting on the training data. 

 

GatedRecurrentUnit(GRU): 

A Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN) architecture 

type. Like other RNNs, a GRU can process sequential data such as time series, natural 

language, and speech. The main difference between a GRU and other RNN architectures, 

such as the Long Short-Term Memory (LSTM) network, is how the network handles 

information flow through time. 

Example: 

"Mymom gavemea bicycleonmy birthdaybecauseshe knew thatI wanted to go biking with 
my friends." 
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As it can be observed from the above sentence, words that affect each other can be 
further apart. For example, "bicycle" and "go biking" are closely related but are placed 
further apart in the sentence. An RNN network finds tracking the state with such a long 
context difficult. It needs to find out what information is important. However, a GRU cell 
greatly alleviates this problem. 

 

 
GRUnetworkwasinventedin2014.Itsolvesproblemsinvolvinglongsequenceswith 

contextsplacedfurtherapart,liketheabovebikingexample.Thisispossiblebecauseofhow the 

GRU cell in the GRU architecture is built. 

UnderstandingtheGRUCell: 

The GRU cell is the basic building block of a GRU network. It comprises three main 

components: an update gate, a reset gate, and a candidate hidden state. 

 

 
 

 
One of the key advantages of the GRU cell is its simplicity. Since it has fewer 

parameters than a long short-term memory (LSTM) cell, it is faster to train and run and less 

prone to overfitting. 

Additionally, one thing to remember is that the GRU cell architecture is simple, the 

cell itself is a black box, and the final decision on how much we should consider the past 

state and how much should be forgotten is taken by this GRU cell. 

GRUvsLSTM  

 

 GRU LSTM 

Structure 
Simplerstructurewithtwogates 

(update and reset gate) 

More complexstructurewiththree gates 

(input, forget, and output gate) 

Parameters 
Fewer parameters (3 weight 

matrices) 
Moreparameters (4weight matrices) 
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 GRU LSTM 

Training Fastertotrain Slow to train 
 Inmostcases,GRUtendtouse LSTMhasamorecomplexstructureand 

Space 

Complexity 

fewermemoryresourcesduetoits 

simpler structure and fewer 
parameters,thusbettersuitedfor 

alargernumberofparameters,thusmight 

require more memory resources and 
couldbelesseffectiveforlargedatasets 

 largedatasetsorsequences. orsequences. 
 Generallyperformedsimilarlyto 

LSTM generally performs well on many 

tasks but is more computationally 

expensive and requires more memory 

resources. LSTM has advantages over 

GRU in natural language understanding 

and machine translation tasks. 

 LSTMonmanytasks,butinsome 
 cases,GRUhasbeenshownto 

Performance outperformLSTMandviceversa. 
 It'sbettertotrybothandseewhich 
 worksbetterforyourdatasetand 
 task. 

 

TheArchitectureofGRU 

AGRUcellkeepstrackoftheimportantinformationmaintainedthroughoutthe network. A 

GRU network achieves this with the following two gates: 

 

 
 
 

 
inputs: 

• ResetGate 

• UpdateGate. 

GivenbelowisthesimplestarchitecturalformofaGRUcell.AGRUcelltakestwo 

1. Theprevioushiddenstate 

2. Theinputinthecurrenttimestamp. 

The cell combinestheseandpasses them through the update and reset gates. To get 

the output in the current timestep, we must pass this hidden state through a dense layer 

with softmax activation to predict the output. Doing so, a new hidden state is obtained and 

then passed on to the next time step. 
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Updategate 

An update gate determines what current GRU cell will pass information to the next 

GRU cell. It helps in keeping track of the most important information. 

 

 
Obtainingtheoutput oftheUpdateGateinaGRUcell: 

The input to the update gate is the hidden layer at the previous timestep, h(t−1) and 

the current input (xt). Both have their weights associated with them which are learned 

during the training process. Let us say that the weights associated withh(t−1) isU(z), and that 

of xtis Wz. The output of the update gate Ztis given by, 

zt=σ(W(z)xt+U(z)h(t−1) 

Resetgate 

A reset gateidentifies the unnecessary information and decides what informationto 

be laid off from the GRU network. Simply put, it decides what information to delete atthe 

specific timestamp. 

Obtainingtheoutput oftheResetGatein aGRUcell: 

The input to the reset gate is the hidden layer at the previous timestep h(t−1)andthe 

current input xt. Both have their weights associated withthem whichare learned during 

thetrainingprocess.Letussaythattheweights associatedwith h(t−1)isUr,andthatof xt is Wr. The 

output of the update gate rt is given by, 

rt=σ(W(r)xt+U(r)h(t−1)) 

It is important to note that the weights associated with the hidden layer at the 

previous timestep and the current input are different for both gates. The values for these 

weights are learned during the training process. 

HowDoesGRU Work? 

Gated Recurrent Unit (GRU)networks process sequential data, such as time series or 

natural language, bypassing the hidden state from one time step to the next. The hidden 

state is a vector that captures the information from the past time steps relevant to the 

currenttimestep.ThemainideabehindaGRUistoallowthenetworktodecidewhat 



B.Tech–CSE R-20 

DeepLearning 

 

 

information from the last time step is relevant to the current time step and what 

information can be discarded. 

 
 
 

 
CandidateHiddenState 

A candidate's hidden state is calculated from the reset gate. This is used todetermine 

the information stored from the past. This is generally called the memory component in a 

GRU cell. It is calculated by, 

ht′=tanh(Wxt+rt⊙Uht−1) 

Here,W-weightassociatedwiththecurrentinput 

 
rt-Outputoftheresetgate 

 
U-Weightassociatedwiththehiddenlayeroftheprevious timestep 

 
ht-Candidatehiddenstate. 

 
Hidden state 

The following formula gives the new hidden state and depends on the update gate 

and candidate hidden state. 

ht=zt⊙ht−1+(1−zt)⊙ht′ 

Here,zt-OutputofupdategateKaTeXparseerror Expected'EOF'got'’'atposition2: h’t - 

Candidate hidden state 

ht−1-Hiddenstateattheprevious timestep 

It can be observed that whenever ztis 0, the information at the previously hidden 

layer gets forgotten. It is updated with the value of the new candidate hidden layer 

(as1−ztwillbe1).If ztis1,thentheinformationfromthepreviously hidden layerismaintained.This 

is how the most relevant information is passed from one state to the next. 

ForwardPropagationinaGRUCell 

InaGatedRecurrentUnit(GRU)cell,theforwardpropagationprocessincludes several 
steps: 
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• Calculatetheoutput oftheupdategate(zt)usingtheupdategateformula: 

 

 
 

 
• Calculatetheoutputoftheresetgate(rt)usingtheresetgateformula: 

 

 

 

• Calculatethecandidate'shiddenstate. 
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• Calculatethenewhiddenstate. 
 

 

This is how forward propagation happens in a GRU cell at a GRU network. Next, the 

process of how the weights is learnt in a GRU network to make the right prediction have to 

be understood. 

BackpropagationinaGRUCell 

Let eachhiddenlayer(orangecolour)representa GRUcell. 

 

 

In the above image, it is observed that whenever the network predicts wrongly, the 

network compares it with the original label, and the loss is then propagated throughout the 

network.Thishappensuntilalltheweights'valuesareidentifiedsothatthevalueof theloss 

function used to compute the loss is minimum. During this time, the weights and biases 

associated with the hidden layers and the input are fine-tuned. 
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AnalogybetweenLSTMandGRUintermsofarchitectureandperformance: 

LSTM and GRU are two types of recurrent neural networks (RNNs) that can handle 

sequential data, such as text, speech, or video. They are designed to overcome the problem of 

vanishing or exploding gradients that affect the training of standard RNNs. However, they 

have different architectures and performance characteristics that make them suitable for 

different applications. In this article, you will learn about the differences and similarities 

between LSTM and GRU in terms of architecture and performance. 

LSTMArchitecture 

LSTM stands for long short-term memory, and it consists of a series of memory cells 

that can store and update information over long time steps. Each memory cell has three 

gates: an input gate, an output gate, and a forget gate. The input gate decides what 

information to add to the cell state, the output gate decides what information to output 

from the cell state, and the forget gate decides what information to discard from the cell 

state. The gates are learned by the network based on the input and the previous hidden 

state. 

GRU Architecture 

GRU standsfor gated recurrentunit, and it is asimplified versionof LSTM. It hasonly 

two gates: a reset gate and an update gate. The reset gate decides how much of the 

previous hidden state to keep, and the update gate decides how much of the new input to 

incorporate into the hidden state. The hidden state also acts as the cell state and theoutput, 

so there is no separate output gate. The GRU is easier to implement and requires fewer 

parameters than the LSTM. 

PerformanceComparison 

The performance of LSTM and GRU depends on the task, the data, and the 

hyperparameters. Generally, LSTM is more powerful and flexible than GRU, but it is also 

more complex and prone to overfitting. GRU is faster and more efficient than LSTM, but it 

may not capture long-term dependencies as well as LSTM. Some empirical studies have 

shownthatLSTMandGRUperformsimilarlyonmanynaturallanguageprocessingtasks, 



B.Tech–CSE R-20 

DeepLearning 

 

 

such as sentiment analysis, machine translation, and text generation. However, some tasks 

may benefit from the specific features of LSTM or GRU, such as image captioning, speech 

recognition, or video analysis. 

SimilaritiesBetweenLSTMandGRU 

Despite their differences, LSTM and GRU share some common characteristics that 

makethembotheffectiveRNNvariants.Theybothusegatestocontroltheinformationflow and to 

avoid the vanishing or exploding gradient problem. They both can learn long-term 

dependencies and capture sequential patterns in the data. They both can be stacked into 

multiple layers to increase the depth and complexity of the network. 

They both can be combined with other neural network architectures, such as 

convolutional neural networks (CNNs) or attention mechanisms, to enhance their 

performance. 

DifferencesBetweenLSTMandGRU 

The main differences between LSTM and GRU lie in their architectures and their 

trade-offs. LSTM has more gates and more parameters than GRU, which gives it more 

flexibility and expressiveness, but also more computational cost and risk of overfitting. GRU 

has fewer gates and fewer parameters than LSTM, which makes it simpler and faster, but 

also less powerful and adaptable. 

LSTM has a separate cell state and output, which allows it to store and output 

different information, while GRU has a single hidden state that serves both purposes, which 

may limit its capacity. LSTM and GRU may also have different sensitivities to the 

hyperparameters, such as the learning rate, the dropout rate, or the sequence length. 

 

BidirectionalLSTM 
Introduction: 

To understand the working of Bi-LSTM first, the working of the unit cell of LSTM 

and LSTM network has to be understood. LSTM stands for long short-term memory. In 

1977, Hochretier and Schmidhuber introduced LSTM networks. These are the most 

commonly used recurrent neural networks. 
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NeedofLSTM 
As the sequential data is better handled by recurrent neural networks, but 

sometimes it is also necessary to store the result of the previous data. For example, “I 

will play cricket” and “I can play cricket” are two different sentences with different 

meanings. The meaning of the sentence depends on a single word so, it is necessary to 

store the data of previous words. But no such memory is available in simple RNN. To 

solve this problem, LSTM is adopted. 

 

TheArchitectureoftheLSTMUnit 
 

 
TheLSTMunithasthreegates. 

a) Input gate 
First, the current state x(t) and previous hidden state h(t-1) are passed into the 

input gate, i.e., the second sigmoid function. The x(t) and h(t-1) values are transformed 

between0and1,where 0isimportant,and1is notimportant.Furthermore,thecurrent and 

hidden state information will be passed through the tanh function. The output from the 

tanh function will range from -1 to 1, and it will help to regulate the network. The 

output values generated from the activation functions are ready for point-by-point 

multiplication. 

b) Forgetgate 
The forget gate decides which information needs to be kept for further 

processing and which can be ignored. The hidden state h(t-1) and current input X(t) 

informationarepassedthroughthesigmoidfunction.Afterpassingthevaluesthrough 
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thesigmoidfunction,itgeneratesvaluesbetween0and1thatconcludewhetherthe part of 

the previous output is necessary (by giving the output closer to 1). 

c) Output gate 
The output gate helps in deciding the value of the next hidden state. This state 

contains information on previous inputs. First, the current and previously hidden state 

values are passed into the third sigmoid function. Then the new cell state generated 

from the cell state is passed through the tanh function. Both these outputs aremultiplied 

point-by-point. Based upon the final value, the network decides which information the 

hidden state should carry. This hidden state is used for prediction. 

Finally, the new cell state and the new hidden state are carried over to the next 

step. To conclude, the forget gate determines which relevant information from the prior 

steps is needed. The input gate decides what relevant information can be added fromthe 

current step, and the output gates finalize the next hidden state. 

 
HowdoLSTMwork? 

TheLengthyShortTermMemoryarchitecture wasinspiredbyanexaminationof 

error flow in current RNNs, which revealed that long time delays were inaccessible to 

existing designs due to backpropagated error, which either blows up or decays 

exponentially. 

An LSTM layer is made up of memory blocks that are recurrently linked. These 

blocks can be thought of as a differentiable version of a digital computer's memory 

chips. Each one has recurrently connected memory cells as well as three multiplicative 

units – the input, output, and forget gates – that offer continuous analogs of the cells' 

write, read, and reset operations. 

 

WhatisBi-LSTM? 

Bidirectional LSTM networks function by presenting each training sequence 

forward and backward to two independent LSTM networks, both of which are coupled 

to the same output layer. This means that the Bi-LSTM contains comprehensive, 

sequential information about all points before and after each point in a particular 

sequence. 

In other words, rather than encoding the sequence in the forward direction only, 

weencodeitinthebackwarddirectionaswellandconcatenatetheresultsfromboth 
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forwardandbackwardLSTMateachtimestep.Theencodedrepresentationofeach word now 

understands the words before and after the specific word. 

BelowisthebasicarchitectureofBi-LSTM. 
 

 
WorkingofBi-LSTM: 

Consider the sentence “I will swim today”. The below image represents the 

encoded representation of the sentence in the Bi-LSTM network. 

 

So, when forward LSTM occurs, “I” will be passed into the LSTM network at timet 

= 0, “will” at t = 1, “swim” at t = 2, and “today” at t = 3. In backward LSTM “today” will be 

passedinto the network at time t = 0, “swim” at t = 1, “will” at t = 2, and“I” at t = 3. In this 

way, both the results of forward and backward LSTM at each time step are calculated. 
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UNIT-IV 

GENERATIVEADVERSARIALNETWORKS(GANS): 

Generativemodels,Conceptandprinciplesof GANs,Architecture of 

GANs (generator and discriminator networks), Comparison 

between discriminative and generative models, Generative 

Adversarial Networks (GANs), Applicationsof GANs 

 

GenerativeAdversarialNetworksanditsmodels 

Introduction: 
 

 

 

 
Generative Adversarial Networks (GANs) were developed in 2014 by Ian 

Goodfellow and his teammates. GAN is basically an approach to generativemodeling 

that generates a new set of data based on training data that look like training data. 

GANs have two main blocks (two neural networks) which compete with each other 

and are able to capture, copy, and analyze the variations in a dataset.The two 

models are usually called Generator and Discriminator which we will coverin 

Components on GANs. The term GAN can be separated into three parts. 

 
• Generative – To learn a generative model, which describes how data is generated in 

terms of a probabilistic model. In simple words, it explains how data is generated 

visually. 
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• Adversarial –Thetrainingofthemodelisdoneinanadversarialsetting. 

• Networks–Usedeepneuralnetworksfortrainingpurposes. 

 
The generator network takes random input (typically noise) and generates 

samples, such as images, text, or audio, that resemble the training data it 

wastrainedon.The goalof the generatoristo produce samples that 

areindistinguishable from real data. 

 
The discriminator network, on the other hand, tries to distinguish between real 

and generated samples. It is trained with real samples from the training data and 

generated samples from the generator. The discriminator’s objective is to correctly 

classify real data as real and generated data as fake. 

 
The training process involves an adversarial gamebetweenthe generator and 

the discriminator. The generator aims to produce samples that fool the discriminator, 

while the discriminator tries to improve its ability to distinguish between real and 

generated data. This adversarial training pushes both networks to improve over time. 

 
As training progresses, the generator becomes more adept at producing 

realistic samples, while the discriminator becomes more skilled at differentiating 

between real and generated data. Ideally, this process converges to a point where 

the generator is capable of generating high-quality samples that are difficult for the 

discriminator to distinguish from real data. 

 
GANs have demonstrated impressive results in various domains, such as 

image synthesis, text generation, and even video generation. They have been used 

for tasks like generating realistic images, creating deepfakes, enhancing low- 

resolution images, and more. GANs have greatly advanced the field of generative 

modeling and have opened up new possibilities for creative applications in artificial 

intelligence. 
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WhyGANs wasDeveloped? 

 
Machine learning algorithms and neural networks can easily be fooled to 

misclassify things by adding some amount of noise to data. After adding some 

amountof noise, the chancesof misclassifyingthe imagesincrease.Hence the small 

rise that, is it possible to implement something that neural networks can start 

visualizing new patterns like sample train data. Thus, GANs were built that generate 

new fake results similar to the original. 

 
ComponentsofGenerativeAdversarialNetworks(GANs): 

 
WhatisGeometricIntuitionbehindtheworkingofGANs? 

 
Two major components of GANs are Generator and Discriminator. The role of 

the generator is like a thief to generate the fake samples based on the original 

sample and make the discriminator fool to understand Fake as real. On the other 

hand, a Discriminator is like a Police whose role is to identify the abnormalities in the 

samples created by Generator and classify them as Fake or real. This competition 

between both the component goes on until the level of perfection is achieved where 

Generator wins making a Discriminator fool on fake data. 
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1) Discriminator –It is a supervised approach means It is a simple classifier that 

predicts data is fake or real. It is trained on real data and provides feedback to a 

generator. 

 
2) Generator –It is an unsupervised learning approach. It will generate data that is 

fake data based on original(real) data. It is also a neural network that has hidden 

layers, activation, loss function. Its aim is to generate the fake image based on 

feedback and make the discriminator fool that it cannot predict a fake image. And 

when the discriminator is made a fool by the generator, the training stops and wecan 

say that a generalized GAN model is created. 

 

 

 
 

 
Here, the generative model captures the distribution of data and is trained in 

such a manner to generate the new sample that tries to maximize the probability of 

the discriminator to make a mistake (maximize discriminator loss). The discriminator 

on other hand is based on a model that estimates the probability that the sample it 

receives is from training data not from the generator and tries to classify it accurately 

and minimize the GAN accuracy. Hence the GAN network is formulated as aminimax 

game where the Discriminator is trying to minimize its reward V(D, G)and the 

generator is trying to maximize the Discriminator loss. 

 
Thebelowfigureaddressestheconstraints 

How is an actual architecture of GAN? 
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Howtwoneuralnetworksarebuildandtrainingandpredictionis done? 

 

 
Both the components are neural networks.The generator output is directly 

connected to the input of the discriminator. And discriminator predicts it and through 

backpropagation, the generator receives a feedback signal to update weights and 

improve performance. The discriminator is a feed-forward neural network. 

Training&PredictionofGenerativeAdversarialNetworks(GANs): 

Step-1) Define a Problem 

The problem statement is key to the success of the project so the first step is 

to define the problem. GANs work with a different set of problems you are aiming so 

you need to define What you are creating like audio, poem, text, Image is a type of 

problem. 

 
Step-2)SelectArchitectureofGAN 

 
There are many different types of GAN & based on the scenario(s), a suitable 

GANarchitecture is chosen. 

 
Step-3)TrainDiscriminatoronRealDataset 

 
Now, Discriminator is trained on a real dataset. It is only having a 

forwardpath.NobackpropagationisthereinthetrainingoftheDiscriminatorinnepochs. 
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And the provided Data is without Noise and only contains real images, and for 

fakeimages, Discriminator uses instances created by the generator as negative 

output. 

 
DiscriminatorTraining: 

 
• Itclassifiesbothrealandfakedata. 

• Thediscriminatorlosshelpsimproveitsperformanceandpenalizeitwhenit misclassifies 

real as fake or vice-versa. 

• weightsofthediscriminatorareupdatedthroughdiscriminatorloss. 

 
Step-4)Train Generator 

 
Provide some Fake inputs for the generator (Noise) and it will use some 

random noise and generate some fake outputs. when Generator is trained, 

Discriminator is Idle and when Discriminator is trained, Generator is Idle. During 

generator training through any random noise as input, it tries to transform it into 

meaningful data. to get meaningful output from the generator takes time and runs 

under many epochs. Steps to train a generator are listed below. 

 
• Getrandomnoiseandproduce ageneratoroutput on noisesample 

• Predictgeneratoroutputfromdiscriminatorasoriginalorfake. 

• Calculatediscriminatorloss. 

• Performbackpropagationthroughdiscriminator,andgeneratorbothtocalculategradients. 

• Usegradientstoupdategenerator weights. 

 
Step-5)TrainDiscriminatoronFakeData 

 
The samples which are generated by Generator will pass to Discriminator and 

It will predict the data passed to it is Fake or real and provide feedback to Generator 

again. 
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Step-6)TrainGeneratorwiththeoutputofDiscriminator 

 
Again, Generator will be trained on the feedback given by Discriminator andtry 

to improve performance. This is an iterative process and continues running until the 

Generator is not successful in making the discriminator fool. 

 

 

 
GenerativeAdversarialNetworks(GANs)LossFunction: 

The loss function is used in minimize and maximize of the iterative process. 

The generator tries to minimize the following loss function while the discriminatortries 

to maximize it. It is the same as a minimax game if you have ever played. 

 

 
 

• D(x)isthediscriminator’sestimateoftheprobabilitythatrealdatainstancexis real. 

• Existhe expectedvalueoverall realdatainstances. 

• G(z)isthe generator’soutput when given noisez. 

• D(G(z))isthediscriminator’sestimateoftheprobabilitythatafakeinstanceis real. 

• Ez istheexpectedvalueoverallrandominputstothegenerator(ineffect,theexpected value 

over all generated fake instances G(z)). 
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ChallengesFacedbyGenerative AdversarialNetworks (GANs): 

 
1. The problem of stability between generator and discriminator. The 

discriminator should not be too strict nor too lenient. 

2. Problem to determine the positioning of objects - Suppose in a picture wehave 

3 horse and generator have created 6 eyes and 1 horse. 

3. The problem in understanding the global objects –GANs do not understand 

the global structure or holistic structure which is similar to the problem of 

perspective. It means sometimes GAN generates an image that is unrealistic 

and cannot be possible. 

4. Problem in understanding the perspective - It cannot understand the 3-d 

images and if we train it on such types of images then it will fail to create 3-d 

images because today GANs are capable to work on 1-d images. 

 

DifferentTypesofGenerativeAdversarialNetworks(GANs): 

1) DC GAN –It is a Deep convolutional GAN. It is one of the most used, powerful, 

and successful typesof GANarchitecture.It is implemented with help of ConvNets in 

place ofaMulti-layeredperceptron.The ConvNetsusea convolutionalstrideandare built 

without max pooling and layers in this network are not completely connected. 

 
2) Conditional GAN and Unconditional GAN (CGAN) –Conditional GAN is deep 

learning neural network in which some additional parameters are used. Labels are 

also put in inputs of Discriminator in order to help the discriminator to classify the 

input correctly and not easily full by the generator. 

 
3) Least Square GAN (LSGAN) –It is a type of GAN that adopts the least-square 

lossfunctionforthediscriminator.Minimizingtheobjectivefunctionof LSGANresults in 

minimizing the Pearson divergence. 
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4) Auxilary Classifier GAN (ACGAN) –It is the same as CGAN and an advanced 

version of it. It says that the Discriminator should not only classify the image as real 

or fake but should also provide the source or class label of the input image. 

 
5) Dual Video Discriminator GAN –DVD-GAN is a generative adversarial network 

for video generation built upon the BigGAN architecture. DVD-GAN uses two 

discriminators: a Spatial Discriminator and a Temporal Discriminator. 

 
6) Single Image Super Resolution GAN (SRGAN) – Its main function is to 

transform low resolution to high resolution known as Domain Transformation. 

 
7) Cycle GAN - It is released in 2017 which performs the task of Image Translation. 

Suppose we have trained it on a horse image dataset and we can translate it into 

zebra images. 

8) Info GAN–Advance version of GAN which is capable to learn to disentangle 

representationinanunsupervisedlearningapproach. 

 
TopGenerativeAdversarialNetworksApplications: 

 
1) Generate Examples for Image Datasets: GANs can be used to generate new 

examples for image datasets in various domains, such as medical imaging, satellite 

imagery,and naturallanguageprocessing.Bygeneratingsyntheticdata, researcherscan 

augment existingdatasets and improve the performance of machine learning models. 

 
2) Generate Photographs of Human Faces: GANs can generate realistic 

photographs of human faces, including images of people who do not exist in the real 

world. We can use these rendered images for various purposes, such as creating 

avatars for online games or social media profiles. 

 
3) Generate Realistic Photographs: GANs can generate realistic photographs of 

various objects and scenes, including landscapes, animals, and architecture. These 

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp
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renderedimagescanbeusedtoaugmentexistingimagedatasetsortocreateentirely new 

datasets. 

 
4) Generate Cartoon Characters: GANs can be used to generate cartoon 

characters that are similar to those found in popular movies or television shows. 

These developed characters can create new content or customize existingcharacters 

in games and other applications. 

 
5) Image-to-Image Translation: GANs can translate images from one domain to 

another, such as convertinga photograph of a real-world scene intoa line drawingor a 

painting. We can create new content or transform existing images in various ways. 

 
6) Text-to-Image Translation: GANs can be used to generate images based on a 

given text description. We can use it to create visual representations of concepts or 

generate images for machine learning tasks. 

 
7) Semantic-Image-to-Photo Translation: GANs can translate images from a 

semantic representation (such as a label map or a segmentation map) into a realistic 

photograph. We can use it to generate synthetic data for training machine learning 

models or to visualize concepts more practically. 

 
8) Face Frontal View Generation: GANs can generate frontal views of faces from 

images that show the face at an angle. We can use it to improve face recognition 

algorithm’s performance or synthesize pictures for use in other applications. 

 
9) Generate New Human Poses: GANs can generate images of people in new 

poses, such as difficult or impossible for humans to achieve. It can be used to create 

new content or to augment existing image datasets. 

 
10) Photos to Emojis: GANs can be used to convert photographs of people into 

emojis, creating a more personalized and expressive form of communication. 

 
11) Photograph Editing: GANs can be used to edit photographs in various ways, 

such as changing the background, adding or removing objects, or altering the 

appearance of people or animals in the image. 
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12) Face Aging: GANs can be used to generate images of people at different ages, 

allowing users to visualize how they might look in the future or to see what theymight 

have looked like in the past. 

 

DifferencesBetweenDiscriminativeandGenerativeModels 

1) Core Idea 

Discriminative models draw boundaries in the data space, while generative 

models try to model how data is placed throughout the space. A generative model 

explains how the data was generated, while a discriminative model focuses on 

predicting the labels of the data. 

 

2) MathematicalIntuition 

In mathematical terms, discriminative machine learning trains a model, which 

isdonebylearningparametersthatmaximizetheconditional probabilityP(Y|X).On the 

other hand, a generative model learns parameters by maximizing the joint probability 

of P(X, Y). 

 

3) Applications 

Discriminative models recognize existing data, i.e., discriminative modeling 

identifies tags and sorts data and can be used to classify data, while Generative 

modeling produces something. 

 
Since these models use different approaches to machine learning, both are 

suited for specific tasks i.e., Generative models are useful for unsupervised learning 

tasks. In contrast, discriminative models are useful for supervised learning tasks. 

GANs(Generativeadversarialnetworks)canbethoughtofasa competitionbetween the 

generator, which is a component of the generative model, and the discriminator, so 

basically, it is generative vs. discriminative model. 

 
4) Outliers 

 
Generativemodelshavemoreimpactonoutliersthandiscriminativemodels. 
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5) ComputationalCost 

 
Discriminative models are computationally cheap as compared to generative 

models. 

 
ComparisonBetweenDiscriminativeandGenerative Models: 

1) Based on Performance 

 
Generative models need fewer data to train compared with discriminative 

models since generative models are more biased as they make stronger 

assumptions, i.e., assumption of conditional independence. 

 
2) BasedonMissingData 

 
In general, if we have missing data in our dataset, then Generative modelscan 

work with these missing data, while discriminativemodels can’t.This isbecause, in 

generative models, we can still estimate the posterior by marginalizing the unseen 

variables. However, discriminative models usually require all the features X to be 

observed. 

 
3) Basedonthe AccuracyScore 

 
If the assumption of conditional independence violates, then at that time, 

generative models are less accurate than discriminative models. 

 
4) Based onApplications 

 
Discriminative models are called “discriminative”since they are useful for 

discriminating Y’s label, i.e., target outcome, so they can only solve classification 

problems. In contrast, Generative models have more applications besides 

classification, such as samplings, Bayes learning, MAP inference, etc. 

 

GenerativeModelsvsDiscriminativeModels: 

Machine learning (ML) and Deep Learning (DL) are two of the most exciting 

andconstantlychangingfieldsofstudyofthe21stcentury.Usingthese 
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technologies,machinesaregiventheabilitytolearnfrompastdataandpredictor make 

decisions from future, unseen data. 

 
The inspiration comes from the human mind, how we use past experiences to 

help us make informed decisions in the present and the future. And while there are 

already many applications of ML and DL, the future possibilities are endless. 

 
Computers utilize mathematics, algorithms, and data pipelines to draw 

meaningful inferences from raw data since they cannot perceive data andinformation 

like humans - not yet, at least. There are two ways we can improve a machine’s 

efficiency: either get more data or come up with newer or more robust algorithms. 

 
Quintillions of data are generated all over the world almost daily, so getting 

fresh data is easy. But in order to work with this gigantic amount of data, we need 

new algorithms or we need to scale up existing ones. 

 
Mathematics, especially branches like calculus, probability, statistics, etc., is 

the backbone of these algorithms or models. They can be widely divided into two 

groups: 

 
1. Discriminativemodels 

2. Generativemodels 

 
Mathematically, generative classifiers assume a functional form for P(Y) and 

P(X|Y), then generate estimated parameters from the data and use the Bayes’ 

theorem to calculate P(Y|X) (posterior probability). Meanwhile, discriminative 

classifiers assume a functional form of P(Y|X) and estimate the parameters directly 

from the provided data. 
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Discriminativemodel 

 
The majority of discriminative/conditional models, are used for supervised 

machine learning. They do what they ‘literally’ say, separating the data points into 

different classes and learning the boundaries using probability estimates and 

maximum likelihood. 

 
Outliers have little to no effect on these models. They are a better choice than 

generative models, but this leads to misclassification problems which can be a major 

drawback. 

 
Here are some examples and a brief description of the widely used 

discriminative models: 

 
1. Logisticregression: Logisticregression can be considered the linearregressionof 

classification models. The main idea behind both the algorithms is similar, but while 

linear regression is used for predicting a continuous dependent variable, logistic 

regression is used to differentiate between two or more classes. 

 
2. Support vector machines: This is a powerful learning algorithm with applicationsin 

both regression and classification scenarios. An n-dimensional space containing the 

data points is divided into classes by decision boundaries using support vectors. The 

best boundary is called a hyperplane. 

 
3. Decision trees: A graphical tree-like model is used to map decisions and their 

probable outcomes. It could be thought of as a robust version of If-else statements. 

 
A few other examples are commonly-used neural nets, k-nearest neighbor 

(KNN), conditional random field (CRF), random forest, etc. 
 

Generativemodel 

 
As the name suggests, generative models can be used to generate new data 

points. These models are usually used in unsupervised machine learning problems. 
Generative models go in-depth to model the actual data distribution and learn the 
different data points, rather than model just the decision boundary between classes. 

 
These models are prone to outliers, which is their only drawback when 

compared to discriminative models. The mathematics behind generative models is 
quite intuitive too. The method is not direct like in the case of discriminative models. 
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TocalculateP(Y|X),they firstestimatethepriorprobability P(Y)andthelikelihood 
probability P(X|Y) from the data provided. 

 
Putting the values into Bayes’ theorem’s equation, we get an accurate 

valuefor P(Y|X). 

 

Someexamplesaswellasadescriptionofgenerativemodelsareasfollows: 

 

1. Bayesian network: Also known as Bayes’ network, this model uses a directed 

acyclic graph (DAG) to draw Bayesian inferences over a set of random variables to 

calculate probabilities. It has many applications like prediction, anomaly detection, 

time series prediction, etc. 

 
2. Autoregressive model: Mainly used for time series modeling, it finds a correlation 

between past behaviors to predict future behaviors. 

 
3. Generative adversarial network (GAN): It’s based on deep learning technology 

and uses two sub models. The generator model trains and generates new datapoints 

and the discriminative model classifies these ‘generated’ data points into real or fake. 

 
SomeotherexamplesincludeNaiveBayes,Markovrandomfield,hiddenMarkov model 

(HMM), latent Dirichlet allocation (LDA), etc. 

 

Discriminativevsgenerative:WhichisthebestfitforDeepLearning? 
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Discriminative models divide the data space into classes by learning the 

boundaries, whereas generative models understand how the data is embedded into 

the space. Both the approaches are widely different, which makes them suited for 

specific tasks. 

 
Deep learning has mostly been using supervised machine learning algorithms 

like Artificial Neural Networks (ANNs), convolutional neural networks (CNNs), and 

Recurrent Neural Networks (RNNs). ANN is the earliest in the trio and leverages 

artificial neurons, backpropagation, weights, and biases to identifypatterns based on 

the inputs. CNN is mostly used for image recognition and computer vision tasks. It 

works by pooling important features from an input image. RNN, which is the latest of 

the three, is used in advanced fields like natural language processing, handwriting 

recognition, time series analysis, etc. 

 
These arethefieldswherediscriminative modelsareeffective andbetterused for 

deep learning as they work well for supervised tasks. Apart from these, deep learning 

and neural nets can be used to cluster images based on similarities. Algorithms like 

autoencoder, Boltzmann machine, and self-organizing maps are popular 

unsupervised deep learning algorithms. They make use of generativemodels for 

tasks like exploratory data analysis (EDA) of high dimensional datasets, image 

denoising, image compression, anomaly detection and even generating new images. 

 
This Person Does Not Exist - Random Face Generatoris an interesting website that 

uses a type of generative model called StyleGAN to create realistic human faces, 

even though the people in these images don’t exist! 

 

https://this-person-does-not-exist.com/en
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UNIT-V 

AUTO-ENCODERS: Auto-encoders, Architecture and components of auto- 

encoders (encoder and decoder), Training an auto-encoder for data 

compression and reconstruction, Relationship between Autoencoders and 

GANs, Hybrid Models: Encoder-Decoder GANs. 

Auto-encoders: 

Autoencoders are a type of deep learning algorithm that are designed to 

receive an input and transform it into a different representation. They play an 

important part in image construction. Artificial Intelligence encircles a wide range of 

technologies and techniques that enable computer systems to solve problems like 

Data Compression which is used in computer vision, computer networks, computer 

architecture, and many other fields. 

Autoencoders areunsupervised neural networksthat use machine learningto 

do this compression for us. 

What Are Autoencoders? 

An autoencoder neural networkis an Unsupervised Machine learningalgorithm 

that applies backpropagation, setting the target values to be equal to the inputs. 

Autoencoders are used to reduce the size of our inputs into a smaller representation. If 

anyone needs the original data, they can reconstruct it from the compressed data. 

 

 
Similar machine learning algorithm i.e., PCA (Principal Component Analysis) which 

does the same task also co-exists. 

 

Autoencoders:ItsEmergence 

AutoencodersarepreferredoverPCAbecause: 

https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/what-is-machine-learning/
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▪ Anautoencodercanlearn non-lineartransformationswitha non-linear 

activation function and multiple layers. 

▪ It doesn’thave to learndense layers. It can use convolutionallayersto learn 

which is better for video, image and series data. 

▪ Itismoreefficienttolearnseverallayerswithanautoencoderratherthan learn one 

huge transformation with PCA. 

▪ Anautoencoderprovidesa representationofeachlayerastheoutput. 

▪ Itcanmakeuseof pre-trainedlayers fromanothermodeltoapplytransfer learning 

to enhance the encoder/decoder. 

 

ApplicationsofAutoencoders 

1) ImageColoring 

 
Autoencoders are used for converting any black and white picture into a 

colored image. Depending on what is in the picture, it is possible to tell what thecolor 

should be. 

 
2) Featurevariation 

It extracts only the required features of an image and generates the output by 

removing any noise or unnecessary interruption. 
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3) DimensionalityReduction 

The reconstructed image is the same as our input but with reduced 

dimensions. It helps in providing the similar image with a reduced pixel value. 

 

 

 
4) DenoisingImage 

 
The input seen by the autoencoder is not the raw input but a stochastically 

corrupted version. A denoising autoencoder is thus trained to reconstruct the original 

input from the noisy version. 
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5) WatermarkRemoval 

It is also used for removing watermarks from images or to remove any object while filming a 

video or a movie. 

 

 

ArchitectureofAutoencoders 

AnAutoencoderconsistofthreelayers: 
 

1. Encoder 

2. Code 

3. Decoder 

 

 

• Encoder:This part of the network compresses the input into a latent space 

representation.Theencoderlayer encodes theinputimageasa compressed 

representation in a reduced dimension. The compressed imageis the distorted 

version of the original image. 

• Code:Thispart of the network represents the compressed input which is fed to 

the decoder. 
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• Decoder:This layerdecodesthe encoded image back to the original 

dimension. The decoded image is a lossy reconstruction of the original image 

and it is reconstructed from the latent space representation. 

 

Thelayerbetweentheencoderanddecoder,ie.thecodeisalsoknown as 

Bottleneck. This is a well-designed approach to decide which aspects of observed 

data are relevant information and what aspects can be discarded. It does this by 

balancing two criteria: 

 
• Compactnessofrepresentation,measuredasthecompressibility. 

• Itretainssomebehaviourallyrelevant variablesfromtheinput. 

 
Traininganauto-encoderfordatacompressionandreconstruction: 

 

An autoencoder consists of two parts: an encoder network and a decoder 

network. The encoder network compresses the input data, while the decodernetwork 

reconstructs the compressed data back into its original form. The compressed data, 

also known as the bottleneck layer, is typically much smaller than the input data. 

 
The encoder network takes the input data and maps it to a lower-dimensional 

representation. This lower-dimensional representation is the compressed data. The 

decoder network takes this compressed data and maps it back to the original input 

data. The decoder network is essentially the inverse of the encoder network. 

 
The bottleneck layer is the layer in the middle of the autoencoder thatcontains 

the compressed data. This layer is much smaller than the input data, which 
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is what allows for compression. The size of the bottleneck layer determines the 

amount of compression that can be achieved. Autoencoders differ from other deep 

learning architectures, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs), in that they do not require labeled data. Autoencoders can 

learn the underlying structure of the data without any explicit labels. 

 
Image CompressionwithAutoencoders 

 
There are two types of image compression: lossless and lossy. Lossless 

compression methods preserve all of the data in the original image, while lossy 

compression methods discard some of the data to achieve higher compressionrates. 

 
Autoencoders can be used for both lossless and lossy compression. Lossless 

compression can be achieved by using a bottleneck layer that is the same size asthe 

input data. In thiscase, the autoencoderessentiallylearns to encode anddecode the 

input data without any loss of information. 

 
Lossy compression can be achieved by using a bottleneck layer that issmaller 

than the input data. In this case, the autoencoder learns to discard some of the data 

to achieve higher compression rates. The amount of data that is discarded depends 

on the size of the bottleneck layer. 

Herearesomeexamplesofimagecompressionusingautoencoders: 

 
• A 512×512 color image can be compressed to a 64×64 grayscale image 

using an autoencoder with a bottleneck layer of size 64. 

• A 256×256 grayscale image can be compressed to a 128×128grayscale 

image using an autoencoder with a bottleneck layer of size 128. 

The effectiveness of autoencoder-based compression techniques can be 

evaluated by comparing the compressed and reconstructed images to the original 

images. The most common evaluation metric is the peak signal-to-noise ratio 

(PSNR), which measures the amount of noise introduced by the compression 

algorithm. Higher PSNR values indicate better compression quality. 
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ImageReconstructionwithAutoencoders 

 
Autoencoders are a type of neural network that can be used for image 

compression and reconstruction. The process involves compressing an image into a 

smaller representation and then reconstructing it back to its original form. Image 

reconstruction is the process of creating an image from compressed data. 

 
Explanationofimagereconstructionfromcompressed data: 

 
The compressed data can be thought of as a compressed version of the 

original image. To reconstruct the image, the compressed data is fed through a 

decoder network, which expands the data back to its original size. The reconstructed 

image will not be identical to the original, but it will be a close approximation. 

 
Howautoencoderscanbeusedforimagereconstruction: 

 
Autoencoders use a loss function to determine how well the reconstructed 

image matches the original. The loss function calculates the difference between the 

reconstructed image and the original image. The goal of the autoencoder is to 

minimize the loss function so that the reconstructed image is as close to the original 

as possible. 

 
Examplesofimagereconstructionusingautoencoders: 

 
An example of image reconstruction using autoencoders is the MNISTdataset, 

which consists of handwritten digits. The autoencoder is trained on the dataset to 

compress and reconstruct the images. Another example is the CIFAR-10 dataset, 

which consists of 32×32 color images of objects. The autoencoder can be trained on 

this dataset to compress and reconstruct the images. 

 
Autoencoder-basedreconstructiontechniquesefficiencyevaluation: 

 
The effectiveness of autoencoder-based reconstruction techniques can be 

evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural 

SIMilarityindex(SSIM).PSNRmeasuresthequalityofthereconstructedimageby 
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comparingittotheoriginalimage,whileSSIMmeasuresthestructuralsimilarity between 

the reconstructed and original images. 

 

VariationsofAutoencodersforImageCompressionandReconstruction 

 
Autoencoders can be modified and improved for better image compression 

and reconstruction. Some of the variations of autoencoders are: 

 
1) Denoisingautoencoders: 

 
Denoising autoencoders are used to remove noise from images. The 

autoencoder is trained on noisy images and is trained to reconstruct the original 

image from the noisy input. 

 
2) Variationalautoencoders: 

 
Variational autoencoders (VAEs) are a type of autoencoder that learn the 

probability distribution of the input data. VAEs are trained to generate new samples 

from the learned distribution. This makes VAEs suitable for image generation tasks. 

 
3) Convolutionalautoencoders: 

 
Convolutional autoencoders (CAEs) use convolutional neural networks 

(CNNs) for image compression and reconstruction. CNNs are specialized neural 

networks that can learn features from images. 

 
Comparisonoftheeffectivenessofdifferenttypesofautoencodersforimage compression & 

reconstruction: 

 
The effectiveness of different types of autoencoders for image compression 

and reconstruction can be compared using metrics such as PSNR and SSIM. CAEs 

are generally more effective for image compression and reconstruction than other 

types of autoencoders. VAEs are better suited for image generation tasks. 

 
Real-TimeExamples: 

 
A real-time example of an autoencoder for image compression and 

reconstructionisGoogle’sGuetzlialgorithm.Guetzliusesacombinationofa 
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perceptual metric and a psycho-visual model to compress images while maintaining 

their quality. Another example is the Deep Image Prior algorithm, which uses a 

convolutional neural network to reconstruct images from compressed data. 

 

ApplicationsofAutoencodersforImageCompressionandReconstruction 

 
Autoencoders have become increasingly popular for image compression and 

reconstruction tasks due to their ability to learn efficient representations of the input 

data. In this, we will explore some of the common applications of autoencoders for 

image compression and reconstruction. 

 
1) MedicalImaging: 

 

Autoencoders have shown great promise in medical imaging applicationssuch 

as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X- Ray 

imaging. The ability of autoencoders to learn feature representations from high- 

dimensional data has made them useful for compressing medical images while 

preserving diagnostic information. 

 
For example, researchers have developed a deep learning-basedautoencoder 

approach for compressing 3D MRI images, which achieved higher 

compressionratiosthantraditionalcompressionmethodswhilepreservingdiagnostic 

quality. This can have significant implications for improving the storage and 

transmission of medical images, especially in resource-limited settings. 

 
2) VideoCompression: 

 

Autoencoders have also been used for video compression, where the goal is 

to compress a sequence of images into a compact representation that can be 

transmitted or stored efficiently. One example of this is the video codec AV1, which 

uses a combination ofautoencodersand traditional compression methods to achieve 

higher compression rates while maintaining video quality. The autoencoder 

component of the codec is used to learn spatial and temporal features of the video 

frames, which are then used to reduce redundancy in the video data. 
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3) AutonomousVehicles: 

 

Autoencoders are also useful for autonomous vehicle applications, where the 

goal is to compress high-resolution camera images captured by the vehicle’ssensors 

while preserving critical information for navigation and obstacle detection. For 

example, researchers have developed an autoencoder-based approach for 

compressing images captured by a self-driving car, which achieved highcompression 

ratioswhilepreservingtheaccuracyof objectdetectionalgorithms.This can have 

significant implications for improving the performance and reliability of autonomous 

vehicles, especially in scenarios where high-bandwidth communication is not 

available. 

 
4) SocialMediaandWebApplications: 

 

Autoencoders have also been used in social media and web applications, 

where the goal is to reduce the size of image files to improve website loading times 

and reduce bandwidth usage. For example, Facebook uses an autoencoder-based 

approach for compressing images uploaded to their platform, which achieves high 

compression ratios while preserving image quality. This has led to faster loading 

times for images on the platform and reduced data usage for users. 

 
Comparison of the effectiveness of autoencoder-based compression and 

reconstruction techniques for different applications: 

 

The effectiveness of autoencoder-based compression and reconstruction 

techniques can vary depending on the application and the specific requirements of 

the task. For example, in medical imaging applications, the preservation ofdiagnostic 

informationiscritical, while in socialmediaapplications, image qualityand loading times 

may be more important. Researchers have compared theeffectiveness of 

autoencoder-based compression and reconstruction techniques with traditional 

compression methods and have found that autoencoder-based methods often 

outperformtraditionalmethodsin termsof compression ratio and image quality. 

 
RelationshipbetweenAutoencodersandGANs: 
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Autoencoders and GANs are both powerful techniques for learning from data 

in an unsupervised way, but they have some differences and trade-offs.Autoencoders 

are easier to train and more stable, but they tend to produce blurry or distorted 

reconstructions or generations. GANs are harder to train and more proneto mode 

collapse, where they produce only a few modes of the data distribution, but 

theytendtoproducesharperandmorediversegenerations.Dependingonyourgoal and 

your data, you might prefer one or the other, or even combine them in a hybrid 

model. 

 

Autoencoders are unsupervised models, which means that they are nottrained 

on labeled data. Instead, they are trained on unlabeled data and learn to reconstruct 

the input data. GANs, on the other hand, are supervised models, which means that 

they are trained on labeled data. The generator in a GAN is trained to generate data 

that looks like the labeled data, and the discriminator is trained to distinguish 

between real and fake data. Autoencoders are typically used for tasks such as image 

denoising and compression. GANs are typically used for tasks such as image 

generation and translation. 

 

HybridModels:Encoder-DecoderGANs: 

 

HowcanyoucombineGANsandautoencoderstocreatehybridmodelsforvarious tasks? 

 

Generativeadversarialnetworks(GANs)andautoencodersaretwopowerfultypesof 
artificial neural networks that can learn from data and generate new samples. But what if 
you could combine them to create hybrid models that can perform various tasks, such as 
image synthesis, anomaly detection, or domain adaptation. 

GANsandautoencoders 

GANs are composed of two networks: a generator and a discriminator. The 

generator tries to create realistic samples from random noise, while the discriminator 

tries to distinguish between real and fake samples. The two networks compete with 

each other, improving their skills over time. Autoencoders are composed of two 

networks:anencoderandadecoder.Theencodercompressestheinputdataintoa 
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lower-dimensional representation, while the decoder reconstructs the input datafrom 

the representation. The goal is to minimize the reconstruction error, while learning 

useful features from the data. 

Hybridmodels 

Hybrid models are models that combine GANs and autoencoders in different 

ways, depending on the task and the objective. For example, you can use an 

autoencoder as the generator of a GAN, and train it to fool the discriminator, while 

also minimizing the reconstruction error. This way, we can generate realistic samples 

that are similar to the input data, but also have some variations. Alternatively, youcan 

use a GAN as the encoder of an autoencoder, and train it to encode the input data 

into a latent space that is compatible with the discriminator. This way, you can learn 

ameaningfulrepresentation ofthedatathatcanbeusedfordownstreamtasks, such as 

classification or clustering. 

Image synthesis 

One of the most common tasks for hybrid models is image synthesis, which is 

the process of creating new images from existing ones, or from scratch. For example, 

you can use a hybrid model to synthesize images of faces, animals, or landscapes, by 

using an autoencoder as the generator of a GAN, and feeding it with real images or 

random noise. This way, you can create diverse and realistic images that preserve the 

attributes of the input data, but also have some variations. You can also use a hybrid 

model to synthesize images of different domains, such as converting photos to 

paintings, or day to night, by using a GAN as the encoder of an autoencoder, and 

feeding it with images from both domains. This way, you can learn a common latent 

space that can be used to transfer the style or the attributes of one domain to 

another. 
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Anomalydetection 

Another task for hybrid models is anomaly detection, which is the process of 

identifying abnormal or unusual patterns in the data, such as outliers, frauds, or 

defects. For example, you can use a hybrid model to detect anomalies in images,such 

as damaged products, or medical conditions, by using an autoencoder as the 

generator of a GAN, and feeding it with normal images. This way, you can train the 

autoencoder to reconstruct normal images well, but fail to reconstruct abnormal 

images. 

Then, we can use the reconstruction error or the discriminator score as a 

measure of anomaly. You can also use a hybrid model to detect anomalies in time 

series, such as sensor readings, or financial transactions, by using a GAN as the 

encoder ofan autoencoder, and feeding it with normal time series. This way, you can 

train the GAN to encode normal time series well, but fail to encode abnormal time 

series. Then, we can use the latent space or the discriminator score as a measure of 

anomaly. 

Domainadaptation 

A third task for hybrid models is domain adaptation, which is the process of 

adapting a model trained on one domain to work on another domain, without 

requiring labeled data from the target domain. For example, you can use a hybrid 

model to adapt a model trained on images of handwritten digits to work on images 

of handwritten letters, by using a GAN as the encoder of an autoencoder, andfeeding 

it with images from both domains. This way, you can train the GAN toencode both 

domains into a shared latent space that is invariant to the domain differences. 


