
 DEPARTMENT OF
 COMPUTER SCIENCE AND ENGINEERING

 DIGITAL NOTES
ON

DEEP LEARNING

(R20A6610)

 Prepared by

 K.Chandusha

 MALLA REDDY COLLEGE OF

ENGINEERING&TECHNOLOGY
(AutonomousInstitution–UGC,Govt.ofIndia)

Recognizedunder2(f)and12(B)ofUGCACT1956

(AffiliatedtoJNTUH,Hyderabad,Approved byAICTE-AccreditedbyNBA&NAAC–‘A’Grade-ISO9001:2015 Certified)

Maisammaguda,Dhulapally(PostVia. Hakimpet),Secunderabad–500100,TelanganaState,India

SYLLABUS

IV YearB. TechCSE L/T/P/C 3/-/-/-3

(R20A6610)DEEPLEARNING
COURSEOBJECTIVES:

1. To understand the basic concepts and techniques of Deep Learning and the need of

Deep Learningtechniques in real-world problems

2. TounderstandCNNalgorithmsandthewaytoevaluateperformanceofthe CNN

architectures.

3. ToapplyRNNandLSTMtolearn,predictandclassifythereal-worldproblems in

theparadigmsofDeepLearning.

4. Tounderstand,learnanddesignGANsfortheselectedproblems.

5. TounderstandtheconceptofAuto-encodersandenhancingGANsusingauto-encoders.

UNIT-I:
INTRODUCTIONTODEEPLEARNING:HistoricalTrendsinDeepLearning,Why

DL is Growing, Artificial Neural Network, Non-linear classification example using

Neural Networks: XOR/XNOR, Single/Multiple Layer Perceptron, Feed Forward

Network, Deep Feed- forward networks, Stochastic Gradient –Based learning, Hidden

Units, Architecture Design, Back- Propagation.

UNIT-II:

CONVOLUTION NEURAL NETWORK (CNN): Introduction to CNNs and their

applications in computer vision, CNN basic architecture, Activation functions-sigmoid,

tanh, ReLU, Softmax layer, Types of pooling layers, Training of CNN in TensorFlow,

various popular CNN architectures: VGG, Google Net, ResNet etc, Dropout,

Normalization, Data augmentation

UNIT-III

RECURRENT NEURAL NETWORK (RNN): Introduction to RNNs and their

applications in sequential data analysis, Back propagation through time (BPTT),

Vanishing Gradient Problem, gradient clipping Long Short Term Memory (LSTM)

Networks, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs.

UNIT-IV

GENERATIVE ADVERSARIAL NETWORKS (GANS): Generative models, Concept

and principles of GANs, Architecture of GANs (generator and discriminator networks),

Comparison between discriminative and generative models, Generative Adversarial

Networks (GANs), Applications of GANs.

UNIT-V
AUTO-ENCODERS: Auto-encoders, Architecture and components of auto-encoders

(encoder and decoder), Training an auto-encoder for data compression and

reconstruction, Relationship between Autoencoders and GANs, Hybrid Models:

Encoder-Decoder GANs.

TEXTBOOKS:
1. DeepLearning:AnMITPressBookbyIanGoodfellowandYoshuaBengioAaron

Courville.

2. MichaelNielson,NeuralNetworksandDeepLearning,DeterminationPress,2015.

3. SatishKumar,Neuralnetworks:AclassroomApproach,TataMcGraw-HillEducation,

2004.

REFERENCES:
1. DeepLearningwithPython,FrancoisChollet,Manningpublications,2018

2. Advanced Deep Learning with Keras, Rowel Atienza, PACKT Publications,

2018

COURSEOUTCOMES:

CO1:UnderstandthebasicconceptsandtechniquesofDeepLearningandthe

needofDeepLearningtechniquesinreal-worldproblems.

CO2:UnderstandCNNalgorithmsandthewaytoevaluateperformanceof

theCNNarchitectures.

CO3:ApplyRNNandLSTMtolearn,predictandclassifythereal-world

problemsintheparadigmsofDeepLearning.

CO4:Understand,learnanddesignGANsfortheselectedproblems.

CO5:UnderstandtheconceptofAuto-encodersandenhancingGANsusingauto-

encoders.

B.Tech–CSE R-20

DeepLearning

UNIT-I:
INTRODUCTIONTODEEPLEARNING:HistoricalTrendsin

Deep Learning, Why DL is Growing, Artificial Neural Network,Non-

linear classification example using Neural Networks: XOR/XNOR,

Single/Multiple Layer Perceptron, Feed Forward Network, Deep

Feed- forward networks, Stochastic Gradient –Based learning,

Hidden Units, Architecture Design, Back- Propagation, Deep learning

frameworks and libraries (e.g., TensorFlow/Keras, PyTorch).

INTRODUCTIONTODEEPLEARNING:

Deep learning is a branch of machine learning which is based on artificial neural
networks. It is capable of learning complex patterns and relationships within data. In deep
learning, we don’t need to explicitly program everything. It has become increasinglypopular
in recent years due to the advances in processing power and the availability oflarge
datasets. Because it is based on artificial neural networks (ANNs) also known as deep neural
networks (DNNs). These neural networks are inspired by the structure and
functionofthehumanbrain’s biologicalneurons,andtheyaredesignedtolearnfromlarge
amounts of data.

1. Deep Learning is a subfield of Machine Learning that involves the use of neural
networks to model and solve complex problems. Neural networks are modeled
after the structure and function of the human brain and consist of layers of
interconnected nodes that process and transform data.

2. The key characteristic of Deep Learning is the use of deep neural networks,which
have multiple layers of interconnected nodes. These networks can learn complex
representations of data by discovering hierarchical patterns andfeatures in the
data. Deep Learning algorithms can automatically learn and improve from data
without the need for manual feature engineering.

3. Deep Learning has achieved significant success in various fields, including image
recognition, natural language processing, speech recognition, and
recommendation systems. Some of the popular Deep Learning architectures
include Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Deep Belief Networks (DBNs).

4. Training deep neural networks typically requires a large amount of data and
computational resources. However, the availability of cloud computing and the
developmentofspecializedhardware,suchasGraphicsProcessingUnits (GPUs), has
made it easier to train deep neural networks.

In summary, Deep Learning is a subfield of Machine Learning that involves the useof

deep neural networks to model and solve complex problems. Deep Learning
hasachievedsignificantsuccessinvariousfields,anditsuseisexpectedtocontinuetogrow as more
data becomes available, and more powerful computing resources becomeavailable.

B.Tech–CSE R-20

DeepLearning

WhatisDeepLearning?

Deep learning is the branch of “ Machine Learning ”which is based on artificial neural
network architecture. An artificial neural network or ANN uses layers of interconnected
nodes called neurons that work together to process and learn from theinput data.

In a fully connected Deep neural network, there is an input layer and one or more
hiddenlayersconnectedoneaftertheother.Eachneuronreceivesinputfromthe previous layer
neurons or the input layer. The output of one neuron becomes the input to other neurons in
the next layer of the network, and this process continues until the final layer produces the
output of the network. The layers of the neural network transform the input data through a
series of nonlinear transformations, allowing the network to learn complex representations
of the input data.

https://www.geeksforgeeks.org/machine-learning/

B.Tech–CSE R-20

DeepLearning

Today, Deep learning has become one of the most popular and visible areas of
machine learning, due to its success in a variety of applications, such as computer vision,
natural language processing, and Reinforcement learning.

Deep learning can be used for supervised, unsupervised as well as reinforcement
machine learning. it uses a variety of ways to process these.

• Supervised Machine Learning: Supervised machine learning is the
machinelearning technique in which the neural network learns to make
predictions or classify data based on the labeled datasets. Here we input both
input features along with the target variables. the neural network learns to make
predictions based on the cost or error that comes from the difference between
thepredictedandtheactualtarget,thisprocessisknownasbackpropagation. Deep
learning algorithms like Convolutional neural networks, Recurrent neural
networks are used for many supervised tasks like image classifications and
recognition, sentiment analysis, language translations, etc.

• UnsupervisedMachineLearning: Unsupervisedmachinelearning is the machine
learning technique in which the neural network learns to discover the patterns or
to cluster the dataset based on unlabeled datasets. Here thereare no target
variables. while the machine has to self-determined the hidden patterns or
relationships within the datasets. Deep learning algorithms like autoencoders
and generative models are used for unsupervised tasks like clustering,
dimensionality reduction, and anomaly detection.

• ReinforcementMachineLearning: ReinforcementMachineLearning is the
machinelearning techniqueinwhichanagentlearnstomakedecisionsin an
environment to maximize a reward signal. The agent interacts with the
environment by taking action and observing the resulting rewards. Deeplearning
can be used to learn policies, or a set of actions, that maximizes the
cumulativerewardovertime.Deepreinforcementlearningalgorithmslike Deep Q
networks and Deep Deterministic Policy Gradient (DDPG) are used to reinforce
tasks like robotics and game playing etc.

Artificialneuralnetworks:
“Artificialneuralnetworks” arebuiltontheprinciplesofthestructureand

operationofhumanneurons. Itis alsoknown as neural networks or neural nets. An artificial
neural network’s input layer, which is the first layer, receives input from external sources
and passes it on to the hidden layer, which is the second layer. Each neuron in the hidden
layer gets information from the neurons in the previous layer, computes the
weightedtotal,andthentransfersit tothe neuronsinthe nextlayer.Theseconnections are
weighted, which means that the impacts of the inputs from the preceding layer aremore or
less optimized by giving each input a distinct weight. These weights are then adjusted during
the training process to enhance the performance of the model.

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/

B.Tech–CSE R-20

DeepLearning

FullyConnectedArtificialNeuralNetwork

Artificial neurons, also known as units, are found in artificial neural networks. The
wholeArtificialNeuralNetwork iscomposed oftheseartificialneurons,whichare arranged in a
series of layers. The complexities of neural networks will depend on the complexities of the
underlying patterns in the dataset whether a layer has a dozen units or millions of
units.Commonly, Artificial Neural Network has an inputlayer,anoutputlayer as well as
hidden layers. The input layer receives data from the outside world which the neural
network needs to analyze or learn about.

Ina fullyconnectedartificialneural network,thereis aninputlayerandone or more
hidden layers connected one after the other. Each neuron receives input from the previous
layer neurons or the input layer. The output of one neuron becomes the input to other
neurons in the next layer of the network, and this process continues until the final layer
produces the output of the network. Then, after passing through one or more hidden layers,
this data is transformed into valuable data for the output layer. Finally, the output layer
provides an output in the form of an artificial neural network’s response to the data that
comes in.

Units are linked to one another from one layer to another in the bulk of neural
networks. Each of these links has weights that control how much one-unit influences
another. The neural network learns more and more about the data as it moves from oneunit
to another, ultimately producing an output from the output layer.

DifferencebetweenMachineLearningandDeepLearning:

Machine learningand deep learning both are subsets of artificial intelligence but
there are many similarities and differences between them.

https://www.geeksforgeeks.org/machine-learning/

B.Tech–CSE R-20

DeepLearning

Machine Learning Deep Learning

Apply statistical algorithms to learn the

hidden patterns and relationships in the

dataset.

Uses artificial neural networkarchitecture

to learn the hidden patterns and

relationships in the dataset.

Canworkonthesmalleramountof dataset

Requiresthelargervolumeofdataset

compared to machine learning

Betterforthelow-label task.

Better for complex task like image

processing, natural language processing,

etc.

Takeslesstimetotrainthemodel. Takesmoretimetotrainthe model.

A model is created by relevant features

which are manually extracted from images

to detect an object in the image.

Relevant features are automatically

extracted from images. It is an end-to-

end learning process.

Lesscomplexandeasytointerprettheresult.

Morecomplex,itworksliketheblackbox

interpretationsoftheresultarenoteasy.

It can work on the CPU or requires less

computingpowerascomparedtodeep

learning.

Itrequiresahigh-performancecomputer

with GPU.

Typesofneuralnetworks:

DeepLearningmodelsareabletoautomaticallylearnfeaturesfromthedata,

whichmakesthemwell-suitedfortaskssuchasimagerecognition,speechrecognition,
andnaturallanguageprocessing.Themostwidelyusedarchitecturesindeeplearningare

B.Tech–CSE R-20

DeepLearning

feedforward neural networks, convolutional neural networks (CNNs), and recurrent neural
networks (RNNs).

Feedforward neural networks (FNNs)are the simplest type of ANN, with a linear flow of
information through the network. FNNs have been widely used for tasks such as image
classification, speech recognition, and natural language processing.

Convolutional Neural Networks (CNNs)are specifically for image and video recognitiontasks.
CNNs are able to automatically learn features from the images, which makes them well-
suitedfortaskssuchasimageclassification,objectdetection,andimage segmentation.
Recurrent Neural Networks (RNNs)are a type of neural network that is able to process
sequential data, such as time series and natural language. RNNs are able to maintain an
internalstatethatcapturesinformationaboutthepreviousinputs,whichmakesthem well-
suitedfortaskssuchasspeechrecognition,naturallanguageprocessing,and language
translation.

ApplicationsofDeepLearning:

The main applications of deep learning can be divided into computer vision, natural
language processing (NLP), and reinforcement learning.

Computervision

In computer vision, Deep learning models can enable machines to identify and
understand visual data. Some of the main applications of deep learning in computer vision
include:

• Object detection and recognition: Deep learning model can be used to identify
and locate objects within images and videos, making it possible for machines to
perform tasks such as self-driving cars, surveillance, and robotics.

• Image classification: Deep learning models can be used to classify images into
categories such as animals, plants, and buildings. This is used in applicationssuch
as medical imaging, quality control, and image retrieval.

https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
https://www.geeksforgeeks.org/applications-of-computer-vision/
https://www.geeksforgeeks.org/applications-of-computer-vision/

B.Tech–CSE R-20

DeepLearning

• Imagesegmentation: Deeplearningmodelscanbeusedforimage segmentation into
different regions, making it possible to identify specific features within images.

Naturallanguageprocessing(NLP):

In NLP, the Deep learning model can enable machines to understand and generate
human language. Some of the main applications of deep learning inNLPinclude:

• Automatic Text Generation – Deep learning model can learn the corpus of text
andnewtextlikesummaries,essayscanbeautomaticallygeneratedusing these
trained models.

• Language translation: Deep learning models can translate text from one
language to another, making it possible to communicate with people from
different linguistic backgrounds.

• Sentiment analysis: Deep learning models can analyze the sentiment of a piece
oftext,makingitpossibletodeterminewhetherthetextispositive,negative, or
neutral. This is used in applications such as customer service, social media
monitoring, and political analysis.

• Speech recognition: Deep learning models can recognize and transcribe spoken
words, making it possible to perform tasks such as speech-to-text conversion,
voice search, and voice-controlled devices.

Reinforcementlearning:

In reinforcement learning, deep learning works as training agents to take action inan
environment to maximize a reward. Some of the main applications of deep learning in
reinforcement learning include:

• Game playing: Deep reinforcement learning models have been able to beat
human experts at games such as Go, Chess, and Atari.

• Robotics: Deep reinforcement learning models can be used to train robots to
perform complex tasks such as grasping objects, navigation, and manipulation.

• Control systems: Deep reinforcement learning models can be used to control
complex systems such as power grids, traffic management, and supply chain
optimization.

PopularspecificapplicationsofDL:

ChallengesinDeepLearning:

Deep learning has made significant advancements in various fields, but there are still

some challenges that need to be addressed. Here are some of the main challenges in

deep learning:

1.Data availability: It requires large amounts of data to learn from. For using deep
learning it’s a big concern to gather as much data for training.

https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/

B.Tech–CSE R-20

DeepLearning

2. Computational Resources: For training the deep learning model, it is
computationally expensive because it requires specialized hardware like GPUs
and TPUs.

3. Time-consuming: While working on sequential data depending on the
computational resource it can take very large even in days or months.

4. Interpretability:Deeplearningmodelsarecomplex,itworkslikeablack box.it is very
difficult to interpret the result.

5. Overfitting: when the model is trained again and again, it becomes too
specializedforthetrainingdata,leadingtooverfittingandpoorperformance on new
data.

AdvantagesofDeepLearning:

1. High accuracy: Deep Learning algorithms can achieve state-of-the-art

performance in various tasks, such as image recognition and natural language
processing.

2. Automated feature engineering: Deep Learning algorithms can automatically
discover and learn relevant features from data without the need for manual
feature engineering.

3. Scalability: Deep Learning models can scale to handle large and complexdatasets,
and can learn from massive amounts of data.

4. Flexibility: DeepLearning models can be appliedto a wide range of tasks andcan
handle various types of data, such as images, text, and speech.

5. Continual improvement: Deep Learning models can continually improve their
performance as more data becomes available.

DisadvantagesofDeepLearning:

1. Highcomputationalrequirements:DeepLearningmodelsrequirelarge amounts of

data and computational resources to train and optimize.
2. Requires large amounts of labeled data: Deep Learning models often require a

large amount of labeled data for training, which can be expensive and time-
consuming to acquire.

3. Interpretability:DeepLearningmodelscanbechallengingtointerpret,making
itdifficulttounderstandhowtheymakedecisions. Overfitting: Deep Learning
models can sometimes overfit to the training data, resulting in poor performance
on new and unseen data.

4. Black-box nature: Deep Learning models are often treated as black boxes,making
it difficult to understand how they work and how they arrived at their
predictions.

In summary, while Deep Learning offers many advantages,including
high accuracy and scalability, it also has some disadvantages, such as high
computational requirements, the need for large amounts of labeled data,
andinterpretabilitychallenges.Theselimitationsneedtobecarefully considered
when deciding whether to use Deep Learning for a specific task.

B.Tech–CSE R-20

DeepLearning

HistoricalTrendsinDeepLearning:

Deep learning has experienced significant historical trends since its

inception. Here are some key milestones and trends that have

shaped the field:

1. Early Developments: Deep learning traces its roots back to
the 1960s with the development of Artificial Neural Networks
(ANNs).

• The idea of using interconnected nodes inspired by the human
brain's structure laid the foundation for later deep learning
advancements.

2. WinterofAI:Inthe1970sand1980s,deeplearningfacedaperiodofstagnation known

as the "AI winter."

• Limited computational power, insufficient data, and theoretical
challenges hindered progress in the field, leading to decreased
interest and funding.

3. Backpropagation: In the 1980s, the backpropagation algorithm,
which efficiently trains deep neural networks, was rediscovered and
popularized.

• This breakthrough allowed for more efficient training of
multi-layer neural networks, addressing some of the
limitations faced during the AI winter.

4. Rise of Convolutional Neural Networks (CNNs): In the late 1990s and
early 2000s, CNNs gained prominence in the fieldof computer vision.

• TheLeNet-5architecturedevelopedbyYannLeCunrevolutionized
image recognition tasks and demonstrated the potential of deep
learning in visual perception.

5. BigDataandGPUs:Theearly2010smarkedaturningpointfor
deeplearningwiththeadventofbigdataandtheavailabilityofpowerful
Graphics Processing Units (GPUs).

• Theabundanceoflabeleddata,combinedwithGPUacceleration,
enabled the training of large-scale deep neuralnetworks and
significantly improved performance.

6. ImageNetandDeepLearningRenaissance:TheImageNetLargeScale
VisualRecognitionChallengein2012,wonbyadeepneuralnetworkknown as
AlexNet, brought deep learning into the spotlight.

• This event sparked a renaissance in the field, encouraging
researcherstoexploredeeplearningarchitecturesandtechniques
across various domains.

7. DeepLearninginNaturalLanguageProcessing(NLP):Deeplearning

B.Tech–CSE R-20

DeepLearning

techniques, particularly recurrent neural networks(RNNs) and later transformer
models, have made substantial advancements in NLP tasks.

• Models like LSTM (Long Short-Term Memory) and BERT
(Bidirectional Encoder Representations from Transformers) have
achieved state-of-the-art results in tasks like machine translation,
sentiment analysis, and question answering.

8. Generative Models: The introduction of generative models like
Variational Autoencoders (VAEs) and Generative Adversarial
Networks (GANs) opened up possibilities for generating realistic
images, videos, and audio.

• GANs,inparticular,havedemonstratedimpressivecapabilitiesin

generating synthetic data.

9. TransferLearning andPretraining: Transferlearninghas become a
prevalent technique in deep learning, enabling models to leverage
knowledge from pretraining on large datasets and then fine-tune on
specific tasks.

• Thisapproachhasledtosignificantperformanceimprovementsand
reduced training time, especially in scenarioswith limited labeled
data.

10. ExplainabilityandInterpretability:Asdeeplearningmodels
have become increasingly complex, researchers havefocused on
improving their explainability and interpretability.

• Techniques like attention mechanisms, saliency maps, and
model-agnosticinterpretabilitymethodsaimtoshedlightonthe
decision-making processes of deep learning models.

Why DLisGrowing:

• ProcessingpowerneededforDeeplearningisreadilybecomingavailable using

GPUs, Distributed Computing and powerful CPUs.

• Moreover,asthedataamountgrows,DeepLearningmodelsseemto outperform

Machine Learning models.

• Focusoncustomizationandrealtime decision.

• Uncover patterns that is hard to detect using traditional techniques. Find latent

features (super variables) without significant manual feature engineering.

B.Tech–CSE R-20

DeepLearning

Processin ML/DL:

ArtificialNeuralNetworks:

Artificial Neural Networks contain artificial neurons which are called units. These

units are arranged in a series of layers that together constitute the whole Artificial Neural

Network in a system.

A layer can have only a dozen units or millions of units as this depends on how the

complex neural networks will be required to learn the hidden patterns in the dataset.

Commonly, Artificial Neural Network has an input layer, an output layer as well as hidden

layers.

The input layer receives data from the outside world which the neural network needs

to analyze or learn about. Then this data passes through one or multiple hidden layers that

transform the input into data that is valuable for the output layer. Finally, the output layer

provides an output in the form of a response of the Artificial Neural Networks to input data

provided.

In the majority of neural networks, units are interconnected from one layer toanother.

Each of these connections has weights that determine the influence of one unit on another

unit. As the data transfers from one unit to another, the neural network learns more and more

about the data which eventually results in an output from the output layer.

B.Tech–CSE R-20

DeepLearning

Thestructuresandoperationsofhumanneuronsserveasthebasisforartificial neural

networks. It is also known as neural networks or neural nets. The input layer of an artificial

neural network is the first layer, and it receives input from external sources and releases it to

the hidden layer, which is the second layer. In the hidden layer, each neuron receives input

from the previous layer neurons, computes the weighted sum, and sends it to the neurons in

the next layer.

These connections are weighted means effects of the inputs from the previous layer

are optimized more or less by assigning different-different weights to each input and it is

adjusted during the training process by optimizing these weights for improved model

performance.

ArtificialneuronsvsBiologicalneurons

The concept of artificial neural networks comes from biological neurons found in

animal brains So they share a lot of similarities in structure and function wise.

• Structure: The structure of artificial neural networks is inspired by biological

neurons. A biological neuron has a cell body or soma to process the impulses,

dendrites to receive them, and an axon that transfers them to other neurons.The

input nodes of artificial neural networks receive input signals, the hidden layer

nodes compute these input signals, and the output layer nodes compute the final

output by processing the hidden layer’s results using activation functions.

BiologicalNeuron ArtificialNeuron

Dendrite Inputs

B.Tech–CSE R-20

DeepLearning

BiologicalNeuron ArtificialNeuron

CellnucleusorSoma Nodes

Synapses Weights

Axon Output

• Synapses: Synapses are the links between biological neurons that enable the

transmission of impulses from dendrites to the cell body. Synapses are

theweightsthatjointheone-layernodestothenext-layernodesinartificial neurons. The

strength of the links is determined by the weight value.

• Learning: In biological neurons, learning happens in the cell body nucleus or

soma,whichhasanucleusthathelpstoprocesstheimpulses.Anaction potential is

produced and travels through the axons if the impulses are powerful enough to

reach the threshold. This becomes possible by synaptic plasticity,which represents

the ability of synapses to become stronger or weaker over timein reaction to

changes in their activity. In artificial neural networks, backpropagation is a

technique used for learning, which adjusts the weights

betweennodesaccordingtotheerror ordifferences betweenpredictedand actual

outcomes.

BiologicalNeuron ArtificialNeuron

Synapticplasticity Backpropagations

• Activation:Inbiologicalneurons,activationisthe firing rate oftheneuron which

happens when the impulses are strong enough to reach the threshold. In artificial

neural networks, A mathematical function known as an activation function maps

the input to the output, and executes activations.

B.Tech–CSE R-20

DeepLearning

HowdoArtificialNeuralNetworkslearn?

Artificial neural networks are trained using a training set. For example, suppose you

want to teach an ANN to recognize a cat. Then it is shown thousands of different images of

catssothatthenetworkcanlearntoidentifyacat.Oncetheneuralnetworkhasbeen trained enough

using images of cats, then you need to check if it can identify cat images correctly. This is

done by making the ANN classify the images it is provided by deciding whether they are cat

images or not.The output obtained by the ANN is corroborated by a human-provided

description of whether the image is a cat image or not.

If the ANN identifies incorrectly then back-propagation is used to adjust whatever it

has learned during training. Backpropagationis done by fine-tuning the weights of the

connections in ANN units based on the error rate obtained. This process continues until the

artificial neural network can correctly recognize a cat in an image with minimal possibleerror

rates.

WhatarethetypesofArtificialNeuralNetworks?

• Feedforward Neural Network: The feedforward neural network is one of the

most basic artificial neural networks. In this ANN, the data or the input provided

travels in a single direction. It enters into the ANN through the input layer and

exits through the output layer while hidden layers may or may not exist. So, the

feedforward neural network has a front-propagated wave only and usually doesnot

have backpropagation.

• Convolutional Neural Network: A Convolutional neural network has some

similarities to the feed-forward neural network, where the connections between

units have weights that determine the influence of one unit on another unit. But a

CNN has one or more than one convolutional layer that uses a convolution

operationontheinputandthenpassestheresultobtainedintheformofoutput to the next

layer. CNN has applications in speech and image processing which is particularly

useful in computer vision.

• Modular Neural Network:A Modular Neural Network contains a collection of

different neural networks that work independently towards obtaining the output

withnointeractionbetweenthem.Eachofthedifferentneuralnetworks

https://www.geeksforgeeks.org/deep-neural-net-with-forward-and-back-propagation-from-scratch-python/
https://www.geeksforgeeks.org/backpropagation-in-data-mining/
https://www.geeksforgeeks.org/understanding-multi-layer-feed-forward-networks/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/

B.Tech–CSE R-20

DeepLearning

performs a different sub-task by obtaining unique inputs compared to other

networks. The advantage of this modular neural network is that it breaks down a

large and complex computational process into smaller components, thus

decreasing its complexity while still obtaining the required output.

• Radial basis function Neural Network:Radial basis functions are those

functions that consider the distance of a point concerning the center. RBF

functions have two layers.In the first layer, the input is mapped into all theRadial

basis functions in the hidden layer and then the output layer computes the output

in the next step. Radial basis function nets are normally used to model the data

that represents any underlying trend or function.

• Recurrent Neural Network:The Recurrent Neural Network saves the output

ofalayerandfeedsthisoutputbacktotheinputtobetterpredicttheoutcomeof the layer.

The first layer in the RNN is quite similar to the feed-forward neural network and

the recurrentneuralnetwork starts once the outputof the

firstlayeriscomputed.Afterthislayer,eachunitwillremembersomeinformationfrom

thepreviousstepsothatitcanactasamemorycellinperforming computations.

ApplicationsofArtificialNeuralNetworks

1. Social Media: Artificial Neural Networks are used heavily in Social Media. For

example,let’stakethe ‘Peopleyoumayknow’ featureonFacebookthat

suggestspeoplethatyoumightknowinreallifesothatyoucansendthem friend requests.

Well, this magical effect is achieved by using Artificial Neural Networks that

analyze your profile, your interests, your current friends, and also their friends and

various other factors to calculate the people you mightpotentially know. Another

common application of Machine Learningin social media is facial recognition.

This is done by finding around 100 reference points on the person’s face and then

matching them with those already available in the database using convolutional

neural networks.

2. Marketing and Sales: When you log onto E-commerce sites like Amazon and

Flipkart, they will recommend your products to buy based on your previous

browsing history. Similarly, suppose you love Pasta, then Zomato, Swiggy, etc.

will show you restaurant recommendations based on your tastes and previous

orderhistory.Thisistrueacrossallnew-agemarketingsegmentslikeBook

sites,Movieservices,Hospitalitysites,etc.anditisdonebyimplementing personalized

marketing. This uses Artificial Neural Networks to identify the customer likes,

dislikes, previous shopping history, etc., and thentailor the marketing campaigns

accordingly.

3. Healthcare: Artificial Neural Networks are used in Oncology to train algorithms

thatcanidentify canceroustissueatthemicroscopiclevelatthesameaccuracy as trained

physicians. Various rare diseases may manifest in physical characteristics and can

be identified in their premature stages by using Facial Analysis on the patient

photos. So the full-scale implementation of Artificial Neural Networks in the

healthcare environment can only enhance the diagnostic abilities of medical

experts and ultimately lead to the overall improvement in the quality of medical

care all over the world.

4. Personal Assistants: Applications like Siri, Alexa, Cortana, etc., and also heard

thembasedonthephonesyouhave!!!Thesearepersonalassistantsandan

https://www.geeksforgeeks.org/recurrent-neural-networks-explanation/
https://www.geeksforgeeks.org/machine-learning/

B.Tech–CSE R-20

DeepLearning

exampleofspeechrecognitionthatuses NaturalLanguageProcessing to interact

with the users and formulate a response accordingly. Natural Language Processing

uses artificial neural networks that are made to handle many tasks of these

personal assistants such as managing the language syntax, semantics,correct

speech, the conversation that is going on, etc.

NeuralNetwork,Non-linearclassificationexampleusingNeural

Networks: XOR/XNOR:

XORproblemwithneuralnetworks:

Among various logical gates, the XOR or also known as the

“exclusive or” problem is one of the logical operations when

performed onbinaryinputs that yield output for different

combinations of input, and for the same combination of input no

output is produced. The outputs generated by the XOR logic are

notlinearlyseparable in the hyperplane. So, in this article let us

see what is the XOR logic and how to integrate the XOR logic

using neural networks.

From the below truth table, it can be inferred that XOR

produces an output for different states of inputs and for thesame

inputs the XOR logic does not produce any output. The Output of

XOR logic is yielded by the equation as shown below.

X Y Output

0 0 0

0 1 1

1 0 1

1 1 0

Output=X.Y’+X’.Y

The XOR gate can be usually termed as a combination of NOT and

AND gates and this type of logic finds its vast application in cryptography
and fault tolerance. The logical diagram of an XOR gate is shown below.

https://analyticsindiamag.com/a-hands-on-guide-to-linear-discriminant-analysis-for-binary-classification/
https://analyticsindiamag.com/a-guide-to-quadratic-approximation-with-logistic-regression/
https://analyticsindiamag.com/kernel-regularizers-with-neural-networks/

B.Tech–CSE R-20

DeepLearning

Thelinearseparabilityofpoints

Linearseparabilityofpoints is the ability to classify the datapoints in
thehyperplane by avoiding the overlapping of the classes in the planes.
Each of the classes should fall above or below the separating line and then
they are termed as linearly separable data points. With respect to logical
gates operations like AND or OR the outputs generated by this logic are
linearly separable in the hyperplane. The linear separable data points
appear to be as shown below.

So here we can see that the pink dots and red triangle points in the

plot do not overlap each other and the linear line is easily separating the
two classes where the upper boundary of the plot can be considered as one
classification and the below region can be considered as the other region of
classification.

https://analyticsindiamag.com/feature-selection-using-svm-and-model-building/

B.Tech–CSE R-20

DeepLearning

Needforlinearseparabilityinneuralnetworks

Linear separability is required in neural networks is required asbasic
operations of neural networks would be in N-dimensional space and the
data points of the neural networks have to be linearly separable to
eradicate the issues with wrong weight updation and wrong classifications
Linear separability of data is also considered as one of the prerequisites
which help in the easy interpretation of input spaces into points whether
the network is positive and negative and linearly separate the data pointsin
the hyperplane.

HowtosolvetheXORproblemwithneuralnetworks:

The XORproblemwith neural networkscan be solved byusing Multi-
Layer Perceptrons or a neural network architecture with an input layer,
hidden layer, and output layer. So during the forward propagationthrough
the neural networks, the weights get updated to the corresponding layers
and the XOR logic gets executed. The Neural network architecture to solve
the XOR problem will be as shown below.

So with this overall architecture and certain weight parameters

between each layer, the XOR logic output can be yielded through forward
propagation. The overall neural network architecture uses the ReLu
activation function to ensure the weights updated in each of the processes

https://analyticsindiamag.com/how-to-visualize-backpropagation-in-neural-networks/

B.Tech–CSE R-20

DeepLearning

to be 1 or 0 accordingly where for the positive set of weights the output at
the particular neuron will be 1 and for a negative weight updation at the
particular neuron will be 0 respectively. So let us understand one outputfor
the first input state

Example:ForX1=0andX2=0weshouldgetaninputof0.Letussolveit.

Solution:
ConsideringX1=0andX2=0

H1=RELU(0.1+0.1+0)=0
H2=RELU(0.1+0.1+0)=0

So now we have obtained the weights that were propagated from the
input layertothehidden layer. Now,letus propagate fromthehiddenlayer to
the output layer.

Y=RELU(0.1+0.(-2))=0

This is how multi-layer neural networks or also known as Multi-

Layer perceptrons (MLP) are used to solve the XOR problem and for all
other input sets the architecture provided above can be verified and the
right outcome for XOR logic can be yielded.

So, amongthevariouslogicaloperations,XORlogical operationisone

such problem wherein linear separability of data points is not possible
using single neurons or perceptrons. So, for solving the XOR problem for
neural networks it is necessary to use multiple neurons in the neural
network architecture with certain weights and appropriate activation
functions to solve the XOR problem with neural networks.

A perceptron is a neural network unit that does a precise

computationtodetectfeaturesintheinputdata.Perceptronismainlyused
toclassifythedataintotwoparts.Therefore,itisalsoknownasLinear
BinaryClassifier.

B.Tech–CSE R-20

DeepLearning

Perceptron uses the step function that returns +1 if the weightedsum of

itsinput 0 and -1.

The activation function is used to map the input between the required

valuelike (0, 1) or (-1, 1).

Aregularneuralnetworklookslikethis:

B.Tech–CSE R-20

DeepLearning

Theperceptronconsistsof4parts.

o InputvalueorOneinputlayer:Theinputlayeroftheperceptronismadeof artificial

input neurons and takes the initial data into the system for further

processing.

o WeightsandBias:

Weight: It represents the dimension or strength of the connection between

units.Iftheweighttonode1tonode2hasahigherquantity,thenneuron1 has a

more considerable influence on the neuron.

Bias: It is the same as the intercept added in a linear equation. It is an

additionalparameterwhichtaskistomodifytheoutputalongwiththe weighted

sum of the input to the other neuron.

o Netsum:Itcalculatesthetotalsum.

o ActivationFunction: Aneuroncanbeactivatedornot,isdeterminedbyan

activation function. The activation function calculates a weighted sum and

further adding bias with it to give the result.

Astandardneuralnetworklookslikethebelowdiagram.

B.Tech–CSE R-20

DeepLearning

How doesitwork?

Theperceptronworksonthesesimplestepswhicharegiven below:

a. Inthefirststep,alltheinputsxaremultipliedwiththeirweightsw.

B.Tech–CSE R-20

DeepLearning

b. Inthisstep,addalltheincreasedvaluesandcallthemtheWeightedsum.

c. Inthelaststep,applytheweightedsumtoacorrectActivationFunction. For

Example:

AUnitStepActivationFunction,

Therearetwotypesofarchitecture.Thesetypesfocusonthefunctionalityof artificial

neural networks as follows-

o SingleLayer Perceptron

B.Tech–CSE R-20

DeepLearning

o Multi-LayerPerceptron

SingleLayerPerceptron

The single-layer perceptron was the first neural network model, proposed in

1958 by Frank Rosenbluth. It is one of the earliest models for learning. Our goal is to

find a linear decision function measured by the weight vector w and the bias

parameter b.

To understand the perceptron layer, it is necessary to comprehend artificial

neural networks (ANNs). The artificial neural network (ANN) is an information

processing system, whose mechanism is inspired by the functionality of biological

neural circuits. An artificial neural network consists of several processing units thatare

interconnected.

This is the first proposal when the neural model is built. The content of the

neuron's local memory contains a vector of weight. The single vector perceptron is

calculatedbycalculatingthesumoftheinputvectormultipliedbythecorresponding

element of the vector, with each increasing the amount of the corresponding

component of the vector by weight. The value that is displayed in the output is the

input of an activation function.

Let us focus on the implementation of a single-layer perceptron for an image

classification problem using TensorFlow. The best example of drawing a single-layer

perceptron is through the representation of "logistic regression."

Now,wehavetodothefollowingnecessary stepsoftraininglogisticregression-

o The weights are initialized with the random values at the origination of

eachtraining.

B.Tech–CSE R-20

DeepLearning

o For each element of the training set, the error is calculated with the difference

between the desired output and the actual output. The calculated error isused

to adjust the weight.

o The process is repeated until the fault made on the entire training set is less

than the specified limit until the maximum number of iterations has been

reached.

we will understand the concept of a multi-layer perceptron and its

implementation in Python using the TensorFlow library.

Multi-layerPerceptron:

Multi-layerperceptionis alsoknownas MLP.Itis fully connecteddense layers,

which transform any input dimension to the desired dimension. A multi-layer

perception is a neural network that has multiple layers. To create a neural network,

we combine neurons together so that the outputs of some neurons are inputs of

other neurons.

Agentleintroductiontoneuralnetworks&TensorFlowcanbefoundhere:

• NeuralNetworks

• IntroductiontoTensorFlow

A multi-layer perceptron has one input layer and for each input, there is one

neuron (or node), it has one output layer with a single node for each output andit

can have any number of hidden layers and each hidden layer can have any

numberofnodes.AschematicdiagramofaMulti-LayerPerceptron(MLP)isdepicted below.

In the multi-layer perceptron diagram above, we can see that there are three inputsand

thus three input nodes and the hidden layer has three nodes. The output layer gives two

outputs, therefore there are two output nodes. The nodes in the input layer take input and

forward it for further process, in the diagram above the nodes in the input layer forwardstheir

output to each of the three nodes in the hidden layer, and in the same way, the hidden layer

processes the information and passes it to the output layer.

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/introduction-to-tensorflow/

B.Tech–CSE R-20

DeepLearning

Every node in the multi-layer perception uses a sigmoid activation function. The

sigmoidactivationfunctiontakesrealvaluesasinputandconvertsthemtonumbers between 0 and 1

using the sigmoid formula.

FeedForwardNetwork:

Whyareneuralnetworks used?

Neuronal networks can theoretically estimate any function, regardless of its

complexity. Supervised learning is a method of determining the correct Y for a fresh X by

learning a function that translates a given X into a specified Y. But what are the differences

between neural networks and other methods of machine learning? The answer is based on the

Inductive Bias phenomenon, a psychological phenomenon.

Machine learning models are built on assumptions such as the one where X and Y are

related. An Inductive Bias of linear regression is the linear relationship between X and Y. In

this way, a line or hyperplane gets fitted to the data.

When X and Y have a complex relationship, it can get difficult for a LinearRegression

method to predict Y. For this situation, the curve must be multi-dimensional or approximate

to the relationship.

A manual adjustment is needed sometimes based on the complexity of the function

and thenumberoflayers within thenetwork. In most cases, trialand error methods combined

with experience get used to accomplishingthis. Hence, this is the reason these parameters are

called hyperparameters.

Whatisa feedforwardneural network?

Feed forward neural networks are artificial neural networksin which nodes do not

form loops. This type of neural network is also known as a multi-layer neural network as all

information is only passed forward.

During data flow, input nodes receive data, which travel through hidden layers, and

exit output nodes. Nolinks exist in the network that could get used to bysending information

back from the output node.

Afeed forwardneuralnetworkapproximatesfunctionsinthefollowingway:

• Analgorithm calculatesclassifiers byusingthe formulay=f* (x).

• Inputxisthereforeassignedtocategoryy.

• According to the feed forward model, y = f (x; θ). This value determines the

closestapproximation of the function.

Feed forward neural networks serve as the basis for object detection in photos, as

shown in the Google Photos app.

https://www.turing.com/kb/importance-of-artificial-neural-networks-in-artificial-intelligence

B.Tech–CSE R-20

DeepLearning

Whatistheworkingprincipleofafeedforwardneuralnetwork?

When the feed forward neural network gets simplified, it can appear as a single layer

perceptron.

This model multiplies inputs with weights as they enter the layer. Afterward, the

weighted input values get added together to get the sum. As long as the sum of the values

rises aboveacertain threshold, set at zero,theoutput valueis usually1, whileifit falls below the

threshold, it is usually -1.

As a feed forward neural network model, the single-layer perceptron often gets used

for classification. Machine learning can also get integrated into single-layer perceptrons.

Through training, neural networks can adjust their weights based on a property called the

delta rule, which helps them compare their outputs with the intended values.

As a result of training and learning, gradient descent occurs. Similarly, multi-layered

perceptrons update their weights. But, this process gets known as back-propagation. If this is

the case, the network's hidden layers will get adjusted according to the output valuesproduced

by the final layer.

Layersof feedforwardneuralnetwork

B.Tech–CSE R-20

DeepLearning

• Inputlayer:

The neurons of this layer receive input and pass it on to the other layers of the

network. Feature or attribute numbers in the dataset must match the number of
neurons in the input layer.

• Outputlayer:

According to the type of model getting built, this layer represents the forecasted

feature.

• Hiddenlayer:

Input and output layers get separated by hidden layers. Depending on the type of

model, there may be several hidden layers.

There are several neurons in hidden layers that transform the input beforeactually
transferring it to the next layer. This network gets constantly updated with weights in
order to make it easier to predict.

• Neuronweights:

Neurons get connected by a weight, which measures their strength or magnitude.

Similartolinearregression coefficients,inputweightscanalsogetcompared. Weight is
normally between 0 and 1, with a value between 0 and 1.

• Neurons:

Artificial neurons get used in feed forward networks, which later get adapted from

biological neurons. A neural network consists of artificial neurons. Neurons functionin
two ways: first, they create weighted input sums, and second, they activate the sums
to make them normal.

Activation functions can either be linear or nonlinear. Neurons have weights

based on their inputs. During the learning phase, the network studies these weights.

• ActivationFunction:

Neurons are responsible for making decisions in this area. According to the

activation function, the neurons determine whether to make a linear or nonlinear
decision. Since it passes through so many layers, it prevents the cascading effect
from increasing neuron outputs.

An activation function can be classified into three major categories: sigmoid,

Tanh, and Rectified Linear Unit (ReLu).

a) Sigmoid:

B.Tech–CSE R-20

DeepLearning

Input values between0and1getmappedtotheoutputvalues.

b) Tanh:

A valuebetween-1and 1getsmappedto theinputvalues.

c) RectifiedLinearUnit:

Onlypositivevaluesareallowedtoflowthroughthisfunction.Negative
values get mapped to 0.

Functioninfeedforwardneuralnetwork:

Cost function

In a feed forward neural network, the cost function plays an important role.The

categorized data points are little affected by minor adjustments to weights and
biases. Thus, a smooth cost function can get used to determine a method ofadjusting
weights and biases to improve performance.

Followingisa definitionofthemeansquareerrorcostfunction:

Where,

w=theweightsgatheredinthenetwork b =

biases

n= numberofinputsfortraining

B.Tech–CSE R-20

DeepLearning

a=outputvectors x

= input

‖v‖=vectorv'snormallength

Lossfunction

The loss function of a neural network gets used to determine if an adjustment

needs to be made in the learning process.

Neurons in the output layer are equal to the number of classes. Showing the

differences between predicted and actual probability distributions. Following is the
cross-entropy loss for binary classification.

Asa resultofmulticlasscategorization,across-entropyloss occurs:

Gradientlearning algorithm

In the gradientdescentalgorithm, the next point gets calculatedbyscaling the

gradient at the current position by a learning rate. Then subtracted from the current
position by the achieved value.

To decrease the function, it subtracts the value (to increase, it would add). As

an example, here is how to write this procedure:

The gradient gets adjusted by the parameter η, which also determines thestep

size. Performance is significantly affected by the learning rate in machine learning.

B.Tech–CSE R-20

DeepLearning

Output units

In the output layer, output units are those units that provide the desired output

or prediction, thereby fulfilling the task that the neural network needs to complete.

There is a close relationship between the choice of output units and the cost

function. Any unit that can serve as a hidden unit can also serve as an output unit ina
neural network.

AdvantagesoffeedforwardNeuralNetworks

• Machinelearningcanbeboostedwithfeedforwardneuralnetworks'simplified
architecture.

• Multi-networkinthefeedforwardnetworksoperateindependently,witha
moderated intermediary.

• Complextasksneedseveralneuronsinthenetwork.
• Neural networks can handle and process nonlinear data easily comparedto

perceptrons and sigmoid neurons, which are otherwise complex.
• A neural network deals with the complicated problem of decision

boundaries.
• Depending on the data, the neural network architecture can vary. For

example, convolutional neural networks (CNNs) perform exceptionally
well in image processing, whereas Recurrent Neural Networks(RNNs)
perform well in text and voice processing.

• Neural networks need Graphics Processing Units (GPUs) to handle large
datasets for massive computational and hardware performance. Several
GPUs get used widely in the market, including Kaggle Notebooks and
Google Collab Notebooks.

Applicationsoffeedforwardneuralnetworks:

Therearemanyapplicationsfortheseneuralnetworks.Thefollowingareafewof them.

https://www.turing.com/kb/recurrent-neural-networks-and-lstm

B.Tech–CSE R-20

DeepLearning

A) Physiologicalfeedforwardsystem

Itispossibletoidentifyfeedforwardmanagementinthissituationbecausethecentral involuntary
regulates the heartbeat before exercise.

B) Generegulationandfeedforward

Detectingnon-temporarychangestotheatmosphereisafunctionofthismotifasafeed forward
system. You can find the majority of this pattern in the illustrious networks.

C) Automationandmachinemanagement

Automationcontrolusingfeedforwardisoneofthedisciplinesinautomation.

D) Parallelfeedforwardcompensationwithderivative

An open-loop transfer converts non-minimum part systems into minimum part systems using
this technique.

Understandingthemathbehindneuralnetworks

Typical deep learning algorithms are neural networks (NNs). As a result of their

unique structure, their popularity results from their 'deep' understanding of data.

Furthermore, NNs are flexible in terms of complexity and structure. Despite all the

advanced stuff, they can't work without the basic elements: they may work better with the
advanced stuff, but the underlying structure remains the same.

DeepFeed-forwardnetworks:

NNsget constructed similarlyto ourbiologicalneurons, and theyresemble the
following:

B.Tech–CSE R-20

DeepLearning

Neurons are hexagons in this image. In neural networks, neurons getarranged
into layers: input is the first layer, and output is the last with the hiddenlayer in the
middle.

NN consists of two main elements that compute mathematical operations.

Neurons calculate weighted sumsusinginput dataandsynaptic weights sinceneural
networks are just mathematical computations based on synaptic links.

Thefollowingisasimplifiedvisualization:

Ina matrixformat,itlooks as follows:

Inthe third step,avectorofonesgetsmultipliedbytheoutput of ourhidden

layer:

Using the output value, we can calculate the result. Understanding these

fundamental concepts will make building NN much easier, and you will be amazed at
how quickly you can do it. Every layer's output becomes the following layer's input.

B.Tech–CSE R-20

DeepLearning

Thearchitectureofthenetwork:

In a network, the architecture refers to the number of hidden layers and unitsin

each layer that make up the network.A feed forward network based on the Universal
Approximation Theorem must have a "squashing" activation function at least on one
hidden layer.

The network can approximate any Borel measurable function within a finite-

dimensional space with at least some amount of non-zero error when there are
enough hidden units. It simply states that we can always represent any functionusing
the multi-layer perceptron (MLP), regardless of what function we try to learn.

Thus, we now know there will always be an MLP to solve our problem, but

there is no specific method for finding it. It is impossible to say whether it will be
possible to solve the given problem if we use N layers with M hidden units.

Research is still ongoing, and for now, the only way to determine this

configuration is by experimenting with it. While it is challenging to find theappropriate
architecture, we need to try many configurations before finding the one that can
represent the target function.

There are two possible explanationsfor this.Firstly, the optimization algorithm

may not find the correct parameters, and secondly, the training algorithms may use
the wrong function because of overfitting.

Whatisbackpropagationinfeedforwardneuralnetwork?

Backpropagation is a technique based on gradient descent. Each stage of a

gradient descent process involves iteratively moving a function in the opposite
direction of its gradient (the slope).

The goal is to reduce the cost function given the training data while learning a

neural network. Network weights and biases of all neurons in each layer determine
the cost function. Backpropagation gets used to calculate the gradient of the cost
function iteratively. And then update weights and biases in the opposite direction to
reduce the gradient.

We must define the error of the backpropagation formula to specify ith neuron

in the ith layer of a network for the j-th training. Example as follows (in which
represents the weighted input to the neuron, and L represents the loss.)

In backpropagationformulas,theerrorisdefinedasabove:

B.Tech–CSE R-20

DeepLearning

Below is the full derivation of the formulas. For each formula below, L stands
for the output layer, g for the activation function, ∇ the gradient, W[l]T layer l weights
transposed.

A proportional activation of neuron i at layer l based on bli bias from layer i to

layer i, w[k] weight from layer l to layer l-1, and ak−1activation of neuron k at layer l-1
for training example j.

The first equation shows how to calculate the error at the output layer for

sample j. Following that, we can use the second equation to calculate the error in the
layer just before the output layer.

Based on the error values for the next layer, the second equation cancalculate

the error in any layer. Because this algorithm calculates errors backward, it is known
as backpropagation. For sample j, we calculate the gradient of the loss function by
taking the third and fourth equations and dividing them by the biases and weights.

Wecan update biasesand weights by averaging gradients of the lossfunction

relative to biases and weights for all samples using the average gradients. The
process is known as batch gradient descent. We will have to wait a long time if we
have too many samples.

If each sample has a gradient, it is possible to update the biases/weights

accordingly. The process is known as stochastic gradient descent. Even though this
algorithm is faster than batch gradient descent, it does not yield a good estimate of
the gradient calculated using a single sample.

It is possible to update biases and weights based on the average gradients of

batches. It gets referred to as mini-batch gradient descent and gets preferred overthe
other two.

StochasticGradientDescent(SGD):
Gradient Descent is an iterative optimization process that searches for an objective

function’soptimumvalue(Minimum/Maximum).Itisoneofthemostusedmethodsfor

https://www.turing.com/kb/j

B.Tech–CSE R-20

DeepLearning

changing a model’s parameters in order to reduce a cost function in machine learningprojects.

Theprimarygoalofgradientdescentistoidentifythemodelparametersthat provide the

maximum accuracy on both training and test datasets. In gradient descent, the gradient is a

vector pointing in the general direction of the function’s steepest rise at a

particularpoint.Thealgorithmmightgraduallydroptowardslowervaluesofthefunction by moving

in the opposite direction of the gradient, until reaching the minimum of the function.

TypesofGradientDescent:

Typically,therearethreetypesofGradientDescent:

1. BatchGradientDescent

2. StochasticGradientDescent

3. Mini-batchGradientDescent

1. StochasticGradientDescent(SGD):

Stochastic Gradient Descent(SGD) isa variant of the GradientDescentalgorithm that is

used for optimizing machine learning models. It addresses the computational inefficiency of

traditional Gradient Descent methods when dealing with large datasets in machine learning

projects.

In SGD, instead of using the entire dataset for each iteration, only a single random

trainingexample(orasmallbatch)isselectedtocalculatethegradientandupdatethe model

parameters. This random selection introduces randomness into the optimization process,

hence the term “stochastic” in stochastic Gradient Descent.

TheadvantageofusingSGDisitscomputationalefficiency,especiallywhen dealing with

large datasets. By using a single example or a small batch, the computational cost per

iteration is significantly reduced compared to traditional Gradient Descent methods that

require processing the entire dataset.

StochasticGradientDescentAlgorithm:

• Initialization:Randomlyinitializetheparametersofthemodel.

• SetParameters:Determinethenumberofiterationsandthelearningrate (alpha) for

updating the parameters.

• Stochastic Gradient Descent Loop: Repeat the following steps until the model

converges or reaches the maximum number of iterations:

a. Shufflethetrainingdatasettointroducerandomness.

b. Iterateovereachtrainingexample(orasmallbatch)intheshuffledorder.

c. Computethegradientofthecostfunctionwithrespecttothemodel parameters

using the current training example (or batch).

d. Update the model parameters by taking a step in the direction of the

negativegradient, scaled by the learning rate.

e. Evaluate the convergence criteria, such as the difference in the cost function

between iterations of the gradient.

• ReturnOptimizedParameters:Oncetheconvergencecriteriaaremet

orthemaximumnumberofiterationsisreached,returntheoptimizedmodel parameters.

https://www.geeksforgeeks.org/difference-between-batch-gradient-descent-and-stochastic-gradient-descent/
https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/
https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/

B.Tech–CSE R-20

DeepLearning

In SGD, since only one sample from the dataset is chosen at random for eachiteration,

the path taken by the algorithm to reach the minima is usually noisier than your typical

Gradient Descent algorithm. But that doesn’t matter all that much because the path taken by

the algorithm does not matter, as long as we reach the minimum and with a significantly

shorter training time.

HiddenUnits:

Inneural networks, a hidden layer is located between the input and output of the

algorithm,inwhichthefunctionappliesweightstotheinputsanddirectsthemthrough anactivation

function as the output. In short, the hidden layers perform nonlinear transformations of the

inputs entered into the network. Hidden layers vary depending on the function of the neural

network, and similarly, the layers may vary depending on their associated weights.

HowdoesaHiddenLayerwork?

Hidden layers, simply put, are layers of mathematical functions each designed to

produce an output specific to an intended result. For example, some forms of hidden layers

are known as squashing functions. These functions are particularly useful when the intended

output of the algorithm is aprobabilitybecause they take an input and produce an output value

between 0 and 1, the range for defining probability.

Hidden layers allow for the function of a neural network to be broken down into

specific transformations of the data. Each hidden layer function is specialized to produce a

defined output. For example, a hidden layer functions that are used to identify human eyes

and ears may be used in conjunction by subsequent layers to identify faces in images. While

the functions to identify eyes alone are not enough to independently recognize objects, they

can function jointly within a neural network.

HiddenLayersandMachine Learning:

Hidden layers are very common in neural networks, however their use andarchitecture

often vary from case to case. As referenced above, hidden layers can beseparated by their

functional characteristics. For example, in a CNN used for object recognition, a hidden layer

that is used to identify wheels cannot solely identify a car, however when placed in

conjunction with additional layers used to identify windows, a large metallic body, and

headlights, the neural network can then make predictions and identify possible cars within

visual data.

https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/probability

B.Tech–CSE R-20

DeepLearning

ChoosingHidden Layers

1. Wellifthedataislinearlyseparablethen youdon'tneedanyhidden layers

at all.

2. If data is less complex and is having fewer dimensions or

featuresthen neural networks with 1 to 2 hidden layers would work.

3. Ifdataishavinglargedimensionsorfeaturesthentogetan optimum

solution, 3 to 5 hidden layers can be used.

It should be kept in mind that increasing hidden layers would also

increase the complexity of the model and choosing hidden layers such as 8, 9,

or in two digits may sometimes lead to overfitting.

ChoosingNodesinHidden Layers

Once hidden layers have been decided the next task is to choose the

number of nodes in each hidden layer.

1. The number of hidden neurons should be between the size of

theinput layer and the output layer.

2. Themostappropriatenumberofhiddenneuronsis

B.Tech–CSE R-20

DeepLearning

Sqrt(inputlayernodes*outputlayernodes)

3. The number of hidden neurons should keep on decreasing in

subsequent layers to get more and more close to pattern and

feature extraction and to identify the target class.

The above algorithms are only a general use case and they can be

moulded according to use case.Sometimes the number of nodes in hidden

layers can increase also in subsequent layers and the number of hidden layers

can also be more than the ideal case.

This whole depends upon the use case and problem statement that we

are dealing with.

ArchitectureDesign:

Typesofneuralnetworksmodelsarelistedbelow:

• Perceptron

• FeedForwardNeural Network

• MultilayerPerceptron

• ConvolutionalNeuralNetwork

• RadialBasisFunctionalNeuralNetwork

• RecurrentNeuralNetwork

• LSTM– LongShort-Term Memory

• SequencetoSequenceModels

• ModularNeural Network

https://www.mygreatlearning.com/academy/learn-for-free/courses/multilayer-perceptron?gl_blog_id=8851

B.Tech–CSE R-20

DeepLearning

AnIntroductiontoArtificialNeuralNetwork

Neuralnetworksrepresent deeplearningusingartificialintelligence.Certain application

scenarios are too heavy or out of scope for traditional machine learningalgorithms to handle.

As they are commonly known, Neural Network pitches in such scenarios and fills the gap.

Also, enroll in theneural networks and deep learningcourse and enhance your skills today.

Artificial neural networks are inspired by the biological neurons within the human

body which activate under certain circumstances resulting in a related action performed bythe

body in response. Artificial neural nets consist of various layers of interconnected artificial

neurons powered by activation functions that help in switching them ON/OFF. Like

traditionalmachine algorithms, here too, there are certain values that neural nets learn in the

training phase.

Briefly, each neuron receives a multiplied version of inputs and random weights,

which is then added with a static bias value (unique to each neuron layer); this is then passed

to an appropriate activation function which decides the final value to be given out of the

neuron. There are various activation functions available as per the nature of input values.

Once the output is generated from the final neural net layer, loss function (input vs output) is

calculated,andbackpropagationisperformedwheretheweightsareadjustedtomaketheloss

minimum. Finding optimal values of weights is what the overall operation focuses around.

Please refer to the following for better understanding.

Weightsare numeric values that are multiplied by inputs. In backpropagation, they are

modified to reduce the loss. In simple words, weights are machine learned values fromNeural

Networks. They self-adjust depending on the difference between predicted outputs vs training

 inputs.

ActivationFunctionisamathematicalformulathathelpstheneurontoswitchON/OFF.

https://www.mygreatlearning.com/blog/what-is-deep-learning/
https://www.mygreatlearning.com/artificial-intelligence/courses
https://www.mygreatlearning.com/academy/learn-for-free/courses/introduction-to-neural-networks-and-deep-learning?gl_blog_id=8851
https://www.mygreatlearning.com/blog/clustering-algorithms-in-machine-learning/

B.Tech–CSE R-20

DeepLearning

• Inputlayer representsdimensionsoftheinputvector.

• Hidden layer represents the intermediary nodes that divide the input space into

regions with (soft) boundaries. It takes in a set of weighted input and produces

output through an activation function.
• Outputlayer representstheoutputoftheneural network.

Backpropagation:

BackpropagationProcessinDeepNeural Network:

Backpropagationis one of the important concepts of a neural network. Our

task is to classify our data best. For this, we have to update the weights of parameter

and bias, but how can we do that in a deep neural network? In the linear regression

model,weusegradientdescenttooptimizetheparameter.Similarlyherewealsouse

gradient descent algorithm using Backpropagation.

For a single training example, Backpropagationalgorithm calculates the

gradient of theerror function. Backpropagation can be written as a function of the

neural network. Backpropagation algorithms are a set of methods used to efficiently

train artificial neural networks following a gradient descent approach which exploits

the chain rule.

The main features of Backpropagation are the iterative, recursive and efficient

method through which it calculates theupdated weight to improve the network until

it is not able to perform the task for which it is being trained. Derivatives of the

activation function to be known at network design time is required to

Backpropagation.

Now, how error function is used in Backpropagation and howBackpropagation

works? Let start with an example and do it mathematically to understand how exactly

updates the weight using Backpropagation.

B.Tech–CSE R-20

DeepLearning

Inputvalues

X1=0.05

X2=0.10

Initialweight

W1=0.1 W5=0.40

W2=0.20 W6=0.45

W3=0.25 W7=0.50

W4=0.30 W8=0.55

BiasValues

b1=0.35 b2=0.60

TargetValues

T1=0.01

T2=0.99

Now,wefirstcalculatethevaluesofH1andH2byaforward pass.

ForwardPass

TofindthevalueofH1wefirstmultiplytheinputvaluefromtheweightsas

B.Tech–CSE R-20

DeepLearning

H1=x1×w1+x2×w2+b1

H1=0.05×0.15+0.10×0.20+0.3

H1=0.3775

TocalculatethefinalresultofH1,weperformedthesigmoid functionas

WewillcalculatethevalueofH2in thesamewayas H1

H2=x1×w3+x2×w4+b1

H2=0.05×0.25+0.10×0.30+0.35

H2=0.3925

TocalculatethefinalresultofH1,weperformedthesigmoid functionas

Now, we calculate thevalues of y1 and y2 inthe same way as we calculate the

H1 and H2. To find the value of y1, we first multiply the input value i.e., the outcome

of H1 and H2 from the weights as

B.Tech–CSE R-20

DeepLearning

y1=H1×w5+H2×w6+b2

y1=0.593269992×0.40+0.596884378×0.45+0.60

y1=1.10590597

Tocalculatethefinalresultofy1weperformedthesigmoidfunctionas

Wewill calculatethevalueofy2 in thesame wayas y1

y2=H1×w7+H2×w8+b2

y2=0.593269992×0.50+0.596884378×0.55+0.60

y2=1.2249214

TocalculatethefinalresultofH1,weperformedthesigmoid functionas

Our target values are 0.01 and 0.99. Our y1 and y2 value is not matched with

our target values T1 and T2. Now, we will find the total error, which is simply the

difference between the outputs from the target outputs. The total error is calculated

as

B.Tech–CSE R-20

DeepLearning

So,thetotalerror is

Now,wewillbackpropagatethiserror toupdatetheweightsusingabackward

pass.

Backwardpassattheoutputlayer

To update the weight, we calculate the error correspond to each weight with

the help of a total error. The error on weight w is calculated by differentiating total

error with respect to w.

Weperformbackwardprocesssofirstconsiderthelastweightw5as

From equation two, it is clear that we cannot partially differentiate it with

respect to w5 because there is no any w5. We split equation one into multiple terms

so that we can easily differentiate it with respect to w5 as

B.Tech–CSE R-20

DeepLearning

w5as

Now,wecalculateeachtermonebyonetodifferentiateEtotalwithrespectto

Puttingthevalueofe-yin equation(5)

B.Tech–CSE R-20

DeepLearning

So, we put the values of in equation no (3) to find

the final result.

Now,wewillcalculatetheupdatedweightw5newwiththehelpofthefollowing

formula

In the same way, we calculate w6new, w7new, and w8newand this will give us the

following values

w5new=0.35891648

w6new=408666186

w7new=0.511301270

w8new=0.561370121

BackwardpassatHiddenlayer

Now, we will backpropagate to our hidden layer and update the weight w1,

w2, w3, and w4 as we have done with w5, w6, w7, and w8 weights. We will calculate

the error at w1 as

From equation (2), it is clear that we cannot partially differentiate it with

respect to w1 because there is no any w1. We split equation (1) into multiple termsso

that we can easily differentiate it with respect to w1 as

B.Tech–CSE R-20

DeepLearning

Now,wecalculateeachtermonebyonetodifferentiateEtotalwithrespectto

w1as

Weagain splitthisbecausethereisnoanyH1finaltermin Etoatalas

willagainsplitbecauseinE1andE2thereisnoH1term.

Splittingisdoneas

Weagain Splitboth becausethereisno anyy1andy2termin E1andE2. We split

it as

Now,wefindthevalueof byputtingvaluesinequation(18)and(19)as From

equation (18)

B.Tech–CSE R-20

DeepLearning

Fromequation(8)

Fromequation(19)

Puttingthevalueofe-y2in equation(23)

B.Tech–CSE R-20

DeepLearning

Fromequation(21)

Nowfromequation(16)and(17)

B.Tech–CSE R-20

DeepLearning

Put thevalueof inequation(15)as

Wehave weneedto figureout as

Puttingthevalueofe-H1in equation(30)

We calculate the partial derivative of the total net input to H1 with respect to

w1 the same as we did for the output neuron:

B.Tech–CSE R-20

DeepLearning

So, we put the values of in equation (13) to find the

final result.

Now,wewillcalculatetheupdatedweightw1newwiththehelpofthefollowing

formula

Inthesameway, wecalculatew2new,w3new,andw4andthiswillgiveusthe following

values

w1new=0.149780716

w2new=0.19956143

w3new=0.24975114

w4new=0.29950229

We have updated all the weights. We found the error 0.298371109 on the

network when we fed forward the 0.05 and 0.1 inputs. In the first round of

Backpropagation,thetotalerrorisdownto 0.291027924.Afterrepeatingthisprocess

10,000,thetotalerrorisdownto0.0000351085.Atthispoint,theoutputsneurons

B.Tech–CSE R-20

DeepLearning

generate 0.159121960 and 0.984065734 i.e., nearby our target value when we

feedforward the 0.05 and 0.1.

Deeplearningframeworksandlibraries:
DeepLearningFrameworks:

Keras, TensorFlow and PyTorch are among the top three frameworks that are
preferred by Data Scientists as well as beginners in the field of Deep Learning.
This comparison on Keras vs TensorFlow vs PyTorch will provide you with acrisp
knowledge about the top Deep Learning Frameworks and help you find out which
one is suitable for you. In this blog you will get a complete insight into the above
three frameworks in the following sequence:

• IntroductiontoKeras,TensorFlow&PyTorch

• ComparisonFactors

• FinalVerdict

Introduction
Keras

Keras is an open source neural networklibrary written in Python. It is capable
ofrunningontopofTensorFlow.Itisdesignedtoenablefastexperimentation with deep
neural networks.

TensorFlow

TensorFlow is an open-source software library for dataflow programming
across a range of tasks. It is a symbolic math library that is used for machine
learning applications like neural networks.

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#introduction
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#comparison
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#final
https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/tensorflow-tutorial/

B.Tech–CSE R-20

DeepLearning

PyTorch

PyTorchis an open-source machine learninglibrary for Python, based on
Torch. It is used for applications such as natural language processing and was
developed by Facebook’s AI research group.

ComparisonFactors
All the three frameworks are related to each other and also have certain basic

differences that distinguishes them from one another.

Theparametersthatdistinguishthem:

• LevelofAPI

• Speed

• Architecture

• Debugging

• Dataset

• Popularity

LevelofAPI

Keras is a high-level APIcapable ofrunning ontop of TensorFlow,CNTK and

Theano. It has gained favor for its ease of use and syntactic simplicity,facilitating fast
development.

TensorFlow is a framework that provides both high and low level APIs.

Pytorch, on the other hand, is a lower-level API focused on direct work with array
expressions.Ithasgainedimmenseinterestinthelastyear,becomingapreferred

https://www.edureka.co/blog/pytorch-tutorial/
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#level
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#speed
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#architecture
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#debugging
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#dataset
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/#popularity

B.Tech–CSE R-20

DeepLearning

solutionforacademicresearch,andapplicationsofdeeplearningrequiring optimizing
custom expressions.

Speed

The performance is comparatively slowerinKeraswhereas TensorFlow and

PyTorch provide a similar pace which is fast and suitable for high performance.

Architecture

Kerashas a simplearchitecture. It is more readable and concise. Tensorflow
on the other hand is not very easy to use even though it provides Keras as a
framework that makes work easier. PyTorch has a complex architecture and the
readability is less when compared to Keras.

B.Tech–CSE R-20

DeepLearning

Debugging

In keras, there is usually very less frequentneed to debug simple networks.

But in case of Tensorflow, it is quite difficultto perform debugging. Pytorchon the
other hand has better debugging capabilities as compared to the other two.

Dataset

Keras is usually used for small datasetsas it is comparatively slower. On the
otherhand,TensorFlowandPyTorchareusedfor highperformancemodels and large
datasets that require fast execution.

Popularity

B.Tech–CSE R-20

DeepLearning

With the increasing demand in the field of Data Science,there has been an
enormous growth of Deep learning technologyin the industry. With this, all the
three frameworks havegained quite a lot of popularity. Kerastops the list
followedbyTensorFlowandPyTorch.Ithasgainedimmensepopularitydueto its
simplicity when compared to the other two.

These were the parameters that distinguish all the three frameworks but there is

no absolute answer to which one is better. The choice ultimately comes down to

• Technicalbackground

• Requirementsand

• Ease ofUse

FinalVerdict
Now coming to the final verdict of Keras vs TensorFlow vs PyTorch let’s have

a look at the situations that are most preferablefor each one of these three deep
learning frameworks

Kerasismost suitablefor:

• RapidPrototyping

• SmallDataset

• Multipleback-endsupport

TensorFlowismostsuitable for:

• LargeDataset

• HighPerformance

• Functionality

• ObjectDetection

https://www.edureka.co/blog/tensorflow-object-detection-tutorial/

B.Tech–CSE R-20

DeepLearning

PyTorchismostsuitable for:

• Flexibility

• ShortTrainingDuration

• Debuggingcapabilities

UNIT-II:
CONVOLUTIONNEURALNETWORK(CNN):IntroductiontoCNNs

and their applications in computer vision, CNN basic architecture,

Activation functions-sigmoid, tanh, ReLU, Softmax layer, Types of

pooling layers, Training of CNN in TensorFlow, various popular CNN

architectures:VGG, GoogleNet,ResNetetc, Dropout,Normalization,

Data augmentation

IntroductiontoCNNsandtheirapplicationsincomputervision:

Deep Learning has proved to be a very powerful tool because of its

ability to handle large amounts of data. The interest to use hidden layers has

surpassed traditional techniques, especially in pattern recognition. One of the

B.Tech–CSE R-20

DeepLearning

most popular deep neural networks is Convolutional Neural Networks (also

known as CNN or ConvNet) in deep learning, especially when it comes to

Computer Vision applications.

Sincethe1950s,the earlydaysofAI,researchershavestruggledtomake

asystemthatcanunderstandvisualdata.Inthefollowingyears,thisfieldcame to be

known as Computer Vision. In 2012, computer vision took a quantum leap

when a group of researchers from the University of Toronto developed an AI

model that surpassed the best image recognition algorithms, and that tooby a

large margin.

The AI system, which became known as AlexNet (named after its main

creator, Alex Krizhevsky), won the 2012 ImageNet computer vision contestwith

an amazing 85 percent accuracy. The runner-up scored a modest 74 percent on

the test.

At the heart of AlexNet was Convolutional Neural Networks a special

type of neural network that roughly imitates human vision.

BackgroundofCNNs

CNN’s were first developed and used around the 1980s. The most that a

CNNcoulddoatthattimewasrecognizehandwrittendigits.Itwasmostlyused

inthepostalsectorstoreadzipcodes,pincodes,etc.Theimportantthingto

B.Tech–CSE R-20

DeepLearning

remember about any deep learning model is that it requires a large amount of

data to train and also requires a lot of computing resources. This was a major

drawback for CNNs at that period and hence CNNs were only limited to the

postal sectors and it failed to enter the world of machine learning.

In the past few decades, Deep Learning has proved to be a very powerful

tool because of its ability to handle large amounts of data. The interest to use

hidden layers has surpassed traditional techniques, especially in pattern

recognition. One of the most popular deep neural networks is Convolutional

Neural Networks (also known as CNN or ConvNet) in deep learning, especially

when it comes to Computer Vision applications.

Since the 1950s, the early days of AI, researchers have struggled to make a

systemthatcan understand visualdata.In the following years, thisfield came to be

known as Computer Vision. In 2012, computer vision took a quantum leap when a

group of researchers from the University of Toronto developed an AI model that

surpassed the best image recognition algorithms, and that too by a large margin.

The AI system, which became known as AlexNet (named after its main

creator, Alex Krizhevsky), won the 2012 ImageNet computer vision contest withan

amazing 85 percent accuracy. The runner-up scored a modest 74 percent on the

test.

B.Tech–CSE R-20

DeepLearning

At the heart of AlexNet was Convolutional Neural Networks a special type

of neural network that roughly imitates human vision. Over the years CNNs have

become a very important part of many Computer Vision applications and hence a

part of any computer vision course online. So let’s take a look at the workings of

CNNs or CNN algorithm in deep learning.

• BackgroundofCNNs

• WhatIsaCNN?

• Howdoesitwork?

• WhatIsaPoolingLayer?

• Limitationsof CNNs

BackgroundofCNNs

CNN’s were first developed and used around the 1980s. The most that a

CNN could do at that time was recognize handwritten digits. It was mostly used in

the postal sectors to read zip codes, pin codes, etc. The important thing to

remember about any deep learning model is that it requires a large amount of data

to train and also requires a lot of computing resources. This was a major drawback

for CNNs at that period and hence CNNs were only limited to the postal sectors

and it failed to enter the world of machine learning.

In 2012, Alex Krizhevsky realized that it was time to bring back the branch

of deep learning that uses multi-layered neural networks. The availability of large

sets of data, to be more specific ImageNet datasets with millions of labeled images

and an abundance of computing resources enabled researchers to revive CNNs.

WhatIsa CNN?

In deep learning, a Convolutional Neural Network(CNN/ConvNet) is a

class of deep neural networks, most commonly applied toanalyze visual imagery.

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#81b6
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#be44
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#8ce1
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#01d2
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/#d31e

B.Tech–CSE R-20

DeepLearning

Now when we think of a neural network we think about matrix multiplications but

that is not the case with ConvNet. It uses a special technique called Convolution.

Now in mathematics convolution is a mathematical operation on two functionsthat

produces a third function that expresses how the shape of one is modified by the

other.

Bottom line is that the ConvNet role to reduce the images into a form

thatiseasiertoprocess,withoutlosingfeatures crucialforgoodprediction.

Howdoesitwork?

Before we go to the working of CNN’s let’s cover the basics such as

what is an image and how is it represented. An RGB image is nothing but a

matrix of pixel values having three planes whereas a grayscale image isthe

same but it has a single plane. Take a look at this image to understand

more.

B.Tech–CSE R-20

DeepLearning

Forsimplicity,considergrayscaleimagestounderstandhowCNNs

work.

The above image shows what a convolution is.We take a filter/kernel

(3×3 matrix) and apply it to the input image to get the convolved feature.

This convolved feature is passed on to the next layer.

B.Tech–CSE R-20

DeepLearning

In the case of RGB color, channel take a look at this animation to

understand its working.

Convolutional neural networks are composed of multiple layers of
artificial neurons. Artificial neurons, a rough imitation of their biological
counterparts, are mathematical functions that calculate the weighted
sumofmultipleinputsandoutputsanactivationvalue.Whenyouinputan

B.Tech–CSE R-20

DeepLearning

image in a ConvNet, each layer generates several activation functions that
are passed on to the next layer.

The first layer usually extracts basic features such as horizontal or
diagonal edges. This output is passed on to the next layer which detects
more complex features such as corners or combinational edges. As we
move deeper into the network it can identify even more complex features
such as objects, faces, etc.

Based on the activation map of the final convolution layer, the

classificationlayeroutputsasetofconfidencescores(valuesbetween0

B.Tech–CSE R-20

DeepLearning

and 1) that specify how likely the image is to belong to a “class.” For

instance, if you have a ConvNet that detects cats, dogs, and horses, the

output of the final layer is the possibility that the input image contains anyof

those animals.

WhatIsaPoolingLayer?

Similar to the Convolutional Layer, the Pooling layer is responsiblefor

reducing the spatial size of the Convolved Feature. This is to decrease the

computational power required to process the data by reducing the

dimensions. There are two types of pooling average pooling and max

pooling.

B.Tech–CSE R-20

DeepLearning

In Max Pooling, the maximum value of a pixel from a portion of the

imagecoveredbythekernelisfoundout.MaxPoolingalsoperformsas a Noise
Suppressant. It discards the noisy activations altogether and also performs
de-noising along with dimensionality reduction.

On the other hand,Average Poolingreturns the average of all the
valuesfrom the portion of the image covered by the Kernel. Average
Pooling simply performs dimensionality reduction as a noise suppressing
mechanism. Hence, we can say that Max Pooling performs a lot better
than Average Pooling.

B.Tech–CSE R-20

DeepLearning

BenefitsofUsingCNNsforMachineandDeepLearning

Deep learning is a form of machine learning that requires a neural network with a minimum of

three layers. Networks with multiple layers are more accurate than single-layer networks. Deep learning

applications often use CNNs or RNNs (recurrent neural networks).

The CNN architecture is especially useful for image recognition and image classification, as well

as other computer vision tasks becausetheycan processlarge amounts of data andproducehighlyaccurate

predictions. CNNs can learn the features of an object through multiple iterations, eliminating the need for

manual feature engineering tasks like feature extraction.

It is possible to retrain a CNN for a new recognition task or build a new model based on an

existing network with trained weights. This is known as transfer learning. This enables ML model

developers to apply CNNs to different use cases without starting from scratch.

WhatAreConvolutionalNeuralNetworks(CNNs)?

A Convolutional Neural Network (CNN) is a type of deep learning algorithm specificallydesigned

for image processing and recognition tasks. Compared to alternative classification models, CNNs require

less preprocessing as they can automatically learn hierarchical feature representations from raw

inputimages.Theyexcelat assigningimportanceto variousobjectsandfeatureswithintheimagesthrough

convolutional layers, which apply filters to detect local patterns.

The connectivity pattern in CNNs is inspired by the visual cortex in the human brain, where

neurons respond to specific regions or receptive fields in the visual space. This architecture enables CNNs

to effectively capture spatial relationships and patterns in images. By stacking multiple convolutional and

pooling layers,CNNscanlearn increasinglycomplex features, leading tohigh accuracyin taskslike image

classification, object detection, and segmentation.

ConvolutionalNeuralNetworkArchitectureModel

Convolutional neural networks are known for their superiority over other artificial neural

networks, given their ability to process visual, textual, and audio data. The CNN architecture comprises

three main layers: convolutional layers, pooling layers, and a fully connected (FC) layer.

There can be multiple convolutional and pooling layers. The more layers in the network, the

greaterthecomplexityand(theoretically)theaccuracyofthemachinelearningmodel.Eachadditional

B.Tech–CSE R-20

DeepLearning

layerthatprocessestheinputdataincreasesthemodel’sabilitytorecognizeobjectsandpatternsinthe data.

TheConvolutional Layer

Convolutional layers are the key building block of the network, where most of the computations

are carried out. It works by applying a filter to the input data to identify features. This filter, known as a

feature detector, checks the image input’s receptive fields for a given feature. This operation is referred to

as convolution.

The filter is a two-dimensional array of weights that represents part of a 2-dimensional image. A

filter is typically a 3×3 matrix, although there are other possible sizes. The filter is applied to a region

withintheinput imageandcalculatesadotproductbetweenthe pixels,whichisfedto anoutputarray.The filter

then shifts and repeats the process until it has covered the whole image. The final output of all the filter

processes is called the feature map.

The CNN typically applies the ReLU (Rectified Linear Unit) transformation to each feature map

after every convolution to introduce nonlinearity to the ML model. A convolutional layer is typically

followed by a pooling layer. Together, the convolutional and pooling layers make up a convolutionalblock.

Additional convolution blocks will follow the first block, creating a hierarchical structure with

later layers learning from the earlier layers. For example, a CNN model might train to detect cars inimages.

Cars can be viewed as the sum of their parts, including the wheels, boot, and windscreen. Each feature of a

car equates to a low-level pattern identified by the neural network, which then combines these parts to

create a high-level pattern.

ThePoolingLayers

A pooling or down sampling layer reduces the dimensionality of the input. Like a convolutional

operation, pooling operations use a filter to sweep the whole input image, but it doesn’t use weights. The

filter instead uses an aggregation function to populate the output array based on the receptive field’svalues.

Therearetwokeytypesof pooling:

• Averagepooling:Thefiltercalculatesthereceptivefield’saveragevaluewhenitscanstheinput.

B.Tech–CSE R-20

DeepLearning

• Max pooling:The filter sends the pixel with the maximum value to populate the output array.This

approach is more common than average pooling.

Pooling layers are important despite causing some information to be lost, because they help reduce the

complexity and increase the efficiency of the CNN. It also reduces the risk of overfitting.

TheFullyConnected(FC)Layer

ThefinallayerofaCNNisafullyconnectedlayer.

The FC layer performs classification tasks using the features that the previous layers and filters

extracted. Instead of ReLu functions, the FC layer typically uses a softmax function that classifies inputs

more appropriately and produces a probability score between 0 and 1.

BasicArchitectureof CNN:

BasicArchitecture

TherearetwomainpartstoaCNNarchitecture

• A convolution tool that separates and identifies the various features

of the image for analysis in a process called as Feature Extraction.

• The network of feature extraction consists of many pairs of

convolutional or pooling layers.

• A fully connected layer that utilizes the output from the convolution

process and predicts the class of the image based on the features

extracted in previous stages.

• This CNN model of feature extraction aims to reduce the number of

features present in a dataset. It creates new features which

summarizes the existing features contained in an original set of

features. There are many CNN layersas shown in the CNN

architecture diagram.

ConvolutionLayers

There are three types of layers that make up the CNN which are the

convolutionallayers,poolinglayers,andfully-connected(FC)layers.When

B.Tech–CSE R-20

DeepLearning

these layers are stacked, a CNN architecture will be formed. In addition to

these three layers, there are two more important parameters which are the

dropoutlayerandtheactivationfunctionwhicharedefinedbelow.

1. ConvolutionalLayer

This layer is the first layer that is used to extract the various features

from the input images. In this layer, the mathematical operation

ofconvolutionisperformedbetweentheinputimageandafilterofa

particularsizeMxM.Byslidingthefilterovertheinputimage,thedot product is

taken between the filter and the parts of the input image with respect to the

size of the filter (MxM).

The output is termed as the Feature map which gives us information

about the image such as the corners and edges. Later, this feature map is fedto

other layers to learn several other features of the input image.

TheconvolutionlayerinCNNpassestheresulttothenextlayer

onceapplyingtheconvolutionoperationintheinput.Convolutional

layersinCNNbenefitalotastheyensurethespatialrelationship between the

pixels is intact.

2. Pooling Layer

In most cases, a ConvolutionalLayerisfollowedbya PoolingLayer. The

primary aim of this layer is to decrease the size of the convolved feature map

to reduce the computational costs. This is performed by decreasing the

connectionsbetweenlayersandindependentlyoperatesoneachfeature map.

Depending upon method used, there are several types of Pooling operations. It

basically summarises the features generated by a convolution layer.

InMaxPooling,thelargestelementistakenfromfeaturemap. Average

Pooling calculates the average of the elements in a predefined sized

Imagesection.Thetotalsumoftheelementsinthepredefinedsectionis

B.Tech–CSE R-20

DeepLearning

computedinSumPooling.ThePoolingLayerusuallyservesasabridge between the

Convolutional Layer and the FC Layer.

This CNN model generalises the features extracted by the convolution

layer, and helps the networks to recognise the features independently. With

the help of this, the computations are also reduced in a network.

3. FullyConnectedLayer

TheFullyConnected(FC)layerconsistsoftheweightsandbiases along with

the neurons and is used to connect the neurons between two different layers.

These layers are usually placed before the output layer and form the last few

layers of a CNN Architecture.

In this, the input image from the previous layers are flattened and fedto

the FC layer. The flattened vector then undergoes few more FC

layerswherethemathematicalfunctionsoperationsusuallytakeplace.Inthis

stage, the classification process begins to take place. The reason two layersare

connected is that two fully connected layers will perform better than a single

connected layer. These layers in CNN reduce the human supervision

4. Dropout

Usually, when all the features are connected to the FC layer, it

cancauseoverfittinginthetrainingdataset.Overfittingoccurswhena

particularmodelworkssowellonthetrainingdatacausinganegative impact in the

model’s performance when used on a newdata.

To overcome this problem, a dropout layer is utilised wherein a few

neurons are dropped from the neural network during training process

resulting inreduced size of the model. On passing a dropout of0.3, 30% ofthe

nodes are dropped out randomly from the neural network.

Dropout results in improving the performance of a machine learning

model as it prevents overfitting by making the network simpler. It drops

neurons from the neural networks during training.

B.Tech–CSE R-20

DeepLearning

5. ActivationFunctions

Finally, one of the most important parameters of the CNN model is the

activation function. They are used to learn and approximate any kind of

continuous and complex relationship between variables of the network. In

simple words, it decides which information of the model should fire in the

forward direction and which ones should not at the end of the network.

Itaddsnon-linearitytothenetwork.Thereareseveralcommonly used

activation functions such as the ReLU, Softmax, tanH and the Sigmoid

functions. Each of these functions have a specific usage. For a binary

classificationCNNmodel,sigmoidandsoftmaxfunctionsarepreferredafor a

multi-class classification, generally softmax us used. In simple terms,

activation functions in a CNN model determine whether a neuron should be

activatedornot.Itdecideswhethertheinputtotheworkisimportantor not to

predict using mathematical operations.

TypesofNeuralNetworks

Activation Functions

Thepopularactivationfunctionsare

a) BinaryStepFunction

Binarystepfunctiondependsonathresholdvaluethatdecideswhether

aneuronshouldbeactivatedornot.Theinputfedtotheactivationfunctionis

comparedtoacertainthreshold;iftheinputisgreaterthanit,thentheneuronis

activated,elseitisdeactivated,meaningthatitsoutputisnotpassedontothe next

hidden layer.

B.Tech–CSE R-20

DeepLearning

Mathematically,itcanberepresentedas:

Thelimitationsofbinarystep functionare asfollows:

• Itcannotprovidemulti-valueoutputs—forexample,itcannotbeusedfor

multi-class classificationproblems.

• Thegradientofthestepfunctioniszero,whichcausesahindranceinthe

backpropagation process.

B.Tech–CSE R-20

DeepLearning

b) LinearActivationFunction:

Thelinearactivationfunction,alsoknownas"noactivation,"or"identity

function"(multipliedx1.0),iswheretheactivationisproportionaltotheinput.

The function doesn't do anything to the weighted sum of the input, it simply

spitsoutthevalueitwasgiven.

Mathematically,itcanberepresentedas:

However,alinearactivationfunctionhas twomajorproblems:

• It’snotpossibletousebackpropagationasthederivativeofthefunction

isaconstantandhasnorelationtotheinputx.

• Alllayersoftheneuralnetworkwillcollapseintooneifalinearactivation

functionisused.Nomatterthenumberoflayersintheneuralnetwork,

B.Tech–CSE R-20

DeepLearning

thelastlayerwillstillbealinearfunctionofthefirstlayer.So,essentially,

alinearactivationfunctionturnstheneuralnetworkintojustonelayer.

Non-LinearActivationFunctions

Thelinearactivationfunctionshownaboveissimplyalinearregression

model.Becauseof its limited power, this does not allow the model to create

complexmappingsbetweenthenetwork’sinputsandoutputs.

Non-linear activation functions solve the following limitations of linear

activation functions:

• Theyallowbackpropagationbecausenowthederivativefunctionwould

berelatedtotheinput,andit’spossibletogobackandunderstandwhich

weightsintheinputneuronscanprovideabetterprediction.

• Theyallowthestackingofmultiplelayersofneuronsastheoutputwould

nowbeanon-linearcombinationofinputpassedthroughmultiplelayers.

Anyoutputcanberepresentedasafunctionalcomputationinaneural

network.

Belowaretendifferentnon-linearneuralnetworksactivationfunctionsand their

characteristics.

a) Sigmoid/LogisticActivationFunction

This function takes any real value as input and outputs values in the

rangeof0to1.Thelargertheinput(morepositive),theclosertheoutputvalue will be

to 1.0, whereas the smaller the input (more negative), the closer the

outputwillbeto0.0,asshownbelow.

B.Tech–CSE R-20

DeepLearning

Mathematically,itcanberepresentedas:

Here’s why sigmoid/logistic activation function is one of the most widely

used functions:

• Itiscommonlyusedformodelswherewehavetopredicttheprobability

asanoutput.Sinceprobabilityofanythingexistsonlybetweentherange

of0and1,sigmoidistherightchoicebecauseofitsrange.

• The function is differentiable and provides a smooth gradient, i.e.,

preventingjumpsinoutputvalues.ThisisrepresentedbyanS-shapeof

thesigmoidactivationfunction.

Thelimitationsofsigmoidfunctionarediscussedbelow:

• Thederivativeofthefunctionisf'(x)=sigmoid(x)*(1-sigmoid(x)).

B.Tech–CSE R-20

DeepLearning

FromtheaboveFigure,thegradientvaluesareonlysignificantforrange

-3 to 3, and the graph gets much flatter in other regions.It implies that for

values greater than 3 or less than -3, the function will have very small

gradients.Asthegradientvalueapproacheszero,thenetworkceasestolearn

andsuffersfromtheVanishinggradientproblem.

• Theoutputofthelogisticfunctionisnotsymmetricaroundzero.Sothe

outputofalltheneuronswillbeofthesamesign.Thismakesthetrainingofthen

euralnetworkmoredifficultandunstable.

b) TanhFunction(HyperbolicTangent)

Tanhfunctionisverysimilartothesigmoid/logisticactivationfunction,

andevenhasthesameS-shapewiththedifferenceinoutputrangeof-1to1.

InTanh,thelargertheinput(morepositive),theclosertheoutputvaluewillbe

to1.0,whereasthesmallertheinput(morenegative),theclosertheoutputwill be to

-1.0.

Mathematically,itcanberepresentedas:

https://www.v7labs.com/training
https://www.v7labs.com/training
https://www.v7labs.com/training

B.Tech–CSE R-20

DeepLearning

Advantagesofusingthisactivationfunctionare:

• TheoutputofthetanhactivationfunctionisZerocentered;hencewecan

easily map the output values as strongly negative, neutral, or strongly

positive.

• Usually used in hidden layers of a neural network as its values lie

between-1to;therefore,themeanforthehiddenlayercomesouttobe

0orveryclosetoit.Ithelpsincenteringthedataandmakeslearningfor the

next layer much easier.

It also faces the problem of vanishing gradients similar to the sigmoid

activationfunction.Plusthegradientofthetanhfunctionismuchsteeperas

comparedtothesigmoidfunction.

B.Tech–CSE R-20

DeepLearning

c) ReLUFunction

ReLUstandsforRectifiedLinearUnit.Althoughitgivesanimpressionof a

linear function, ReLU has a derivative function and allows for

backpropagation whilesimultaneouslymaking itcomputationallyefficient.

ThemaincatchhereisthattheReLUfunctiondoesnotactivateallthe

neurons at the same time.

Theneuronswillonlybedeactivatediftheoutputofthelinear

transformationislessthan0.

Mathematically,itcanberepresentedas:

Note: Althoughbothsigmoidandtanhfacevanishinggradientissue,

tanhiszerocentered,andthegradientsarenotrestrictedtomoveina certain

direction. Therefore, in practice, tanh nonlinearity is always preferred

to sigmoid nonlinearity.

B.Tech–CSE R-20

DeepLearning

Theadvantages ofusingReLUasanactivation functionareas follows:

• Sinceonlyacertainnumberofneuronsareactivated,theReLUfunction

isfarmorecomputationallyefficientwhencomparedtothesigmoidand tanh

functions.

• ReLU accelerates the convergence of gradient descent towards the

global minimum of theloss functiondue to its linear, non-saturating

property.

Thelimitationsfacedbythisfunctionare:

• TheDyingReLUproblem.

The negative side of the graph makes the gradient value zero. Due to

thisreason,duringthebackpropagationprocess,theweightsandbiasesfor

someneuronsarenotupdated.Thiscancreatedeadneuronswhichneverget

activated.

• Allthenegativeinputvaluesbecomezeroimmediately,whichdecreases

themodel’sabilitytofitortrainfromthedataproperly.

Note:ForbuildingthemostreliableMLmodels,splityourdataintotrain,validation, and test

sets.

https://www.v7labs.com/blog/pytorch-loss-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions

B.Tech–CSE R-20

DeepLearning

d) LeakyReLU Function

LeakyReLUisanimprovedversionofReLUfunctiontosolvetheDying

ReLUproblemasithasasmallpositiveslopeinthenegativearea.

Mathematically,itcanberepresentedas:

TheadvantagesofLeakyReLUaresameasthatofReLU,inadditionto

thefactthatitdoesenablebackpropagation,evenfornegativeinputvalues.By

makingthisminormodificationfornegativeinputvalues,thegradientoftheleft

sideofthegraphcomesouttobeanon-zerovalue.Therefore,we wouldno

longerencounterdeadneuronsinthatregion.

`HereisthederivativeoftheLeakyReLUfunction.

B.Tech–CSE R-20

DeepLearning

Thelimitationsthatthisfunctionfacesinclude:

• Thepredictionsmaynotbeconsistentfornegativeinputvalues.

• Thegradientfornegativevaluesisasmallvaluethatmakesthelearning

ofmodelparameterstime-consuming.

d) ParametricReLUFunction

Parametric ReLU is another variant of ReLU that aims to solve the

problemofgradient’sbecomingzeroforthelefthalfoftheaxis.Thisfunction

provides the slope of the negative part of the function as an argumenta. By

performingbackpropagation,themostappropriatevalueofaislearnt.

B.Tech–CSE R-20

DeepLearning

Mathematically,itcanberepresentedas:

Where"a"is theslopeparameterfornegativevalues.

TheparameterizedReLUfunctionisusedwhentheleakyReLUfunction

stillfailsatsolvingtheproblemofdeadneurons,andtherelevantinformationis

notsuccessfullypassedtothenextlayer.

This function’s limitation is that it may perform differently for different

problemsdependinguponthevalueofslopeparametera.

TypesofpoolingLayers:

B.Tech–CSE R-20

DeepLearning

AConvolutionalneuralnetwork(CNN)isaspecialtypeofArtificialNeuralNetworkthat is

usually used for image recognition and processing due to its ability to recognize patterns in

images. It eliminates the need to extract features from visual data manually. It learns images

by sliding a filter of some size on them and learning not just the features from the data but

also keeps Translation invariance.

Thetypicalstructureofa CNNconsistsof threebasiclayers

1. Convolutional layer:These layersgenerate a feature mapby sliding a filter over the input

image and recognizing patterns in images.

2. Poolinglayers:Theselayers downsamplethefeaturemaptointroduceTranslation invariance,

which reduces the overfitting of the CNN model.

3. FullyConnectedDenseLayer:Thislayercontainsthesamenumberofunitsasthenumber of

classes and the output activation function such as “softmax” or “sigmoid”

Whatare Pooling layers?

Pooling layers are one of the building blocks of Convolutional Neural Networks.

Where Convolutional layers extract featuresfrom images, Pooling layers consolidate the

featureslearned by CNNs. Its purpose is to gradually shrink the representation’s spatial

dimension to minimize the number of parameters and computations in the network.

WhyarePoolinglayersneeded?

ThefeaturemapproducedbythefiltersofConvolutionallayersislocation-dependent. For

example, If an object in an image has shifted a bit it might not be recognizable by the

Convolutional layer. So, it means that the feature map records the precise positions offeatures

in the input. What pooling layers provide is “Translational Invariance” which makes the CNN

invariant to translations, i.e., even if the input of the CNN is translated, the CNN will still be

able to recognize the features in the input.

In all cases, poolinghelps to make the representation become approximatelyinvariant

to smalltranslations of the input. Invariance to translation means that ifwe translate the input

by a small amount, the values of most of the pooled outputs do not change.

HowdoPoolinglayersachieve that?

A Pooling layer is added after the Convolutional layer(s), as seen in the structure of a

CNN above. It down samples the output of the Convolutional layers by sliding the filter of

some size with some stride size and calculating the maximum or average of the input.

Thereare twotypesofpoolingthatare used:

1. Max pooling: This works by selecting the maximum value from every pool. Max Pooling retains

themost prominentfeatures of the feature map, and the returned image is sharper than the original

image.

2. Average pooling: This pooling layer works by getting the average of the pool. Average pooling

retains theaverage valuesof features of the feature map. It smoothes the image while keeping the

essence of the feature in an image.

https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/deep-learning/convolutional-neural-networks-cnns-tutorial-with-python-417c29f0403f
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf
https://towardsai.net/p/machine-learning/building-neural-networks-from-scratch-with-python-code-and-math-in-detail-i-536fae5d7bbf

B.Tech–CSE R-20

DeepLearning

TheworkingofPoolingLayersusingTensorFlow.CreateaNumPyarray and reshape it.

MaxPooling

Create a MaxPool2D layer with pool_size=2 and strides=2. Apply the MaxPool2D

layer to the matrix, and you will get the MaxPooled output in the tensor form. By applying it

tothematrix,theMax poolinglayerwillgothroughthematrix bycomputingthemax ofeach

2×2poolwithajumpof2.Printtheshapeofthetensor.Usetf.squeezetoremovedimensions of size 1

from the shape of a tensor.

Average Pooling

Create an AveragePooling2D layer with the same 2 pool_size and strides. Apply the

AveragePooling2Dlayer tothematrix. Byapplyingit tothematrix,theaveragepoolinglayer will

go through the matrix by computing the average of 2×2 for each pool with a jump of 2. Print

the shape of the matrix and Use tf.squeeze to convert the output into a readable form by

removing all 1 size dimensions.

The GIF here explains how these pooling layers go through the input matrix and

computes the maximum or average for max pooling and average pooling, respectively.

https://towardsai.net/p/computer-vision/training-faster-r-cnn-using-tensorflow-object-detection-api-with-a-custom-dataset-88dd525666fd

B.Tech–CSE R-20

DeepLearning

GlobalPooling Layers

Global Pooling Layers often replace the classifier’s fully connected or Flatten layer.

The model instead ends with a convolutional layer that produces as many feature maps as

there are target classes and performs global average pooling on each of the feature maps to

combine each feature map into a single value.

Create the same NumPy array but with a different shape. By keeping the same shape

as above, the Global Pooling layers will reduce them to one value.

GlobalAverage Pooling

Considering a tensor of shapeh*w*n, the output of the Global Average Pooling layer

is a single value across h*w that summarizes the presence of the feature. Instead of

downsizingthepatchesoftheinputfeaturemap,theGlobalAveragePoolinglayerdownsizes the

whole h*w into 1 value by taking the average.

GlobalMaxPooling

With the tensor of shape h*w*n, the output of the Global Max Pooling layer is a

single value acrossh*wthat summarizes the presence of a feature. Instead of downsizing the

patchesoftheinputfeaturemap,theGlobalMaxPoolinglayerdownsizesthe whole h*w into 1

value by taking the maximum.

TrainingofCNNinTensorFlow

B.Tech–CSE R-20

DeepLearning

The MNIST database (Modified National Institute of Standard Technology

database) is an extensive database of handwritten digits, which is used for training

various image processing systems. It was created by "reintegrating" samples from

the original dataset of the MNIST.

If we get familiarized with the building blocks of Connects, we can build one

with TensorFlow. We can use the MNIST dataset for image classification.

Preparing the data is the same as in the previous tutorial. We can run codeand

jump directly into the architecture of CNN.

Here, the code isexecuted in Google Colab(an online editor of machine

learning).WecangotoTensorFloweditorthroughthebelowlink:

https://colab.research.google.com

Theseare thestepsusedtotrainingtheCNN.

Steps:

Step 1: Upload Dataset

Step 2: The Input layer

Step3:Convolutionallayer

Step 4: Pooling layer

Step5:ConvolutionallayerandPoolingLayer

Step6:Denselayer

Step7:Logit Layer

https://colab.research.google.com/

B.Tech–CSE R-20

DeepLearning

Step1:UploadDataset

The MNIST dataset is available with scikit for learning in this URL (Unified

ResourceLocator).Wecandownloaditandstoreitinourdownloads.We canupload it with

fetch_mldata ('MNIST Original').

Createatest/trainset

Weneed tosplitthedatasetintotrain_test_split.

Scalethefeatures

Finally,wescalethefunctionwiththehelpof MinMaxScaler.

1. importnumpyasnp

2. importtensorflowastf

3. fromsklearn.datasetsimportfetch_mldata

4. #ChangeUSERNAMEbytheusernameofthe machine

5. ##WindowsUSER

6. mnist=fetch_mldata('C:\\Users\\USERNAME\\Downloads\\MNISToriginal')

7. ##MacUser

8. mnist=fetch_mldata('/Users/USERNAME/Downloads/MNISToriginal')

9. print(mnist.data.shape)

10. print(mnist.target.shape)

11. fromsklearn.model_selectionimporttrain_test_split

B.Tech–CSE R-20

DeepLearning

12. A_train,A_test,B_train,B_test=train_test_split(mnist.data,mnist.target,test_siz

e=0.2, random_state=45)

13. B_train= B_train.astype(int)

14. B_test=B_test.astype(int)

15. batch_size=len(X_train)

16. print(A_train.shape,B_train.shape,B_test.shape)

17. ##rescale

18. fromsklearn.preprocessingimportMinMaxScaler

19. scaler=MinMaxScaler()

20. #Trainthe Dataset

21. X_train_scaled=scaler.fit_transform(A_train.astype(np.float65))

1. #testthedataset

2. X_test_scaled=scaler.fit_transform(A_test.astype(np.float65))

3. feature_columns=[tf.feature_column.numeric_column('x',shape=A_train_scale

d.shape[1:])]

4. X_train_scaled.shape[1:]

DefiningtheCNN(ConvolutionalNeuralNetwork)

CNN uses filters on the pixels of any image to learn detailed patterns comparedto

global patterns with a traditional neural network. To create CNN, we have to define:

1. A convolutional Layer: Apply the number of filters to the feature map. After

convolution, we need to use a relay activation function to add non-linearity to the

network.

2. Pooling Layer:The next step after the Convention is to downsampling the maximum

facility. The objective is to reduce the mobility of the feature map to prevent

overfitting and improve the computation speed. Max pooling is a traditional

technique, which splits feature maps into subfields and only holds maximum values.

3. Fully connected Layers:All neurons from the past layers are associated with the

other next layers. The CNN has classified the label according to the features from

convolutional layers and reduced with any pooling layer.

CNNArchitecture

o ConvolutionalLayer:Itapplies145x5filters(extracting5x5-pixelsub-regions),

B.Tech–CSE R-20

DeepLearning

o Pooling Layer:This will perform max pooling with a 2x2 filter and stride of 2 (which

specifies that pooled regions do not overlap).

o ConvolutionalLayer:Itapplies365x5filters,withReLUactivationfunction

o PoolingLayer:Again,performsmaxPoolingwitha2x2filterandstrideof 2.

o 1,764 neurons,with the dropout regularization rate of 0.4 (where the probability of

0.4 that any given element will be dropped in training)

o Dense Layer (LogitsLayer):Thereare tenneurons, oneforeachdigittargetclass(0- 9).

ImportantmodulestouseincreatingaCNN:

1. Conv2d().Constructatwo-dimensionalconvolutionallayerwiththenumberoffilters, filter

kernel size, padding, and activation function like arguments.

2. max_pooling2d (). Construct a two-dimensional pooling layer using the max-pooling

algorithm.

3. Dense().Constructadenselayerwiththehiddenlayersand units

Wecandefinea functiontobuildCNN.

The following represents steps to construct every building block before wrapping

everything in the function.

Step2:Inputlayer

1. #Inputlayer

2. defcnn_model_fn(mode,features, labels):

3. input_layer=tf.reshape(tensor=features["x"],shape=[-1,26,26,1])

Weneedtodefineatensorwiththeshapeofthedata.Forthat,wecanuse themodule

tf.reshape. In this module, we need to declare the tensor to reshapeand to shape the

tensor. The first argument is the feature of the data, that is defined in the argument

of a function.

A picture has a width, a height, and a channel. TheMNISTdataset is a

monochromic picture with the28x28size. We set the batch size into -1 in the shape

argument so that it takestheshapeofthefeatures["x"]. Theadvantageisto tunethe batch

size to hyperparameters. If the batch sizeis 7, the tensor feeds5,488values (28 * 28 *

7).

Step3:ConvolutionalLayer

1. #firstCNNLayer

B.Tech–CSE R-20

DeepLearning

2. conv1=tf.layers.conv2d(

3. inputs=input_layer,

4. filters=18,

5. kernel_size=[7,7],

6. padding="same",

7. activation=tf.nn.relu)

The first convolutional layer has 18 filters with the kernel size of 7x7 with equal

padding. The same padding has both the output tensor and input tensor have the

same width and height. TensorFlow will add zeros in the rowsand columns to ensure

the same size. We use the ReLu activation function. The output size will be [28, 28,

and 14].

Step4:Pooling layer

The next step after the convolutional is pooling computation. The pooling

computation will reduce the extension of the data. We can use the module

max_pooling2d with a size of 3x3 and stride of 2. We use the previous layer as input.

The output size can be [batch_size, 14, 14, and 15].

1. ##firstPoolingLayer

2. pool1=tf.layers.max_pooling2d(inputs=conv1,pool_size=[3,3],strides=2)

Step5:PoolingLayerand SecondConvolutionalLayer

The second CNN has exactly 32 filters, with the output size of [batch_size, 14, 14,

32]. The size of the pooling layer has the same as ahead, and output shape is

[batch_size, 14, 14, and18].

1. conv2= tf.layers.conv2d(

2. inputs=pool1,

3. filters=36,

4. kernel_size=[5,5],

5. padding="same",

6. activation=tf.nn.relu)

7. pool2=tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2).

Step 6:Fullyconnected (Dense)Layer

We have to define the fully-connected layer. The feature map has to be

compressed before to be combined with the dense layer. We can use the module

reshape with a size of 7*7*36.

B.Tech–CSE R-20

DeepLearning

The dense layer will connect1764neurons. We add a ReLu activation function

and can add a ReLu activation function. We add a dropout regularization term with a

rateof0.3,meaning30percentoftheweightswillbe0.Thedropouttakesplaceonly along the

training phase. Thecnn_model_fn()has an argument mode to declare if the model

needs to trained or to be evaluate.

1. pool2_flat=tf.reshape(pool2, [-1,7*7*36])

2. dense=tf.layers.dense(inputs=pool2_flat,units=7*7*36,activation=tf.nn.relu)

3. dropout=tf.layers.dropout(inputs=dense,rate=0.3,training=mode==tf.esti

mator.ModeKeys.TRAIN)

Step7:Logits Layer

Finally,wedefinethelastlayerwiththepredictionofmodel.Theoutputshape is equal

to the batch size 12, equal to the total number of images in the layer.

1. #LogitLayer

2. logits=tf.layers.dense(inputs=dropout,units=12)

We can create a dictionary that contains classes and the possibility of each

class. The module returns the highest value with tf.argmax() if the logit layers. The

softmax function returns the probability of every class.

PopularCNNarchitectures-VGG,GoogleNet,ResNet:

B.Tech–CSE R-20

DeepLearning

TypesofConvolutionalNeuralNetworkAlgorithms

LeNet

LeNet is a pioneering CNN designed for recognizing handwritten characters. It was proposed by

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner in the late 1990s. LeNet consists of a

series of convolutional and pooling layers, as well as a fully connected layer and softmax classifier. It was

among the first successful applications of deep learning for computer vision. It has been used by banks to

identify numbers written on cheques in grayscale input images.

VGG

VGG (Visual GeometryGroup) is a research group within the Department of Engineering Science

at the Universityof Oxford. The VGG group is well-known for its work in computer vision, particularlyin

the area of convolutional neural networks (CNNs).

One of the most famous contributions from the VGG group is the VGG model, also known as

VGGNet. The VGG model is a deep neural network that achieved state-of-the-art performance on the

ImageNet Large Scale Visual Recognition Challenge in 2014, and has been widely used as a benchmarkfor

image classification and object detection tasks.

The VGG model is characterized by its use of small convolutional filters (3×3) and deep

architecture (up to 19 layers), which enables it to learn increasingly complex features from input images.

The VGG model also uses max pooling layers to reduce the spatial resolution of the feature maps and

increase the receptive field, which can improve its ability to recognize objects of varying scales and

orientations.

The VGG model has inspired many subsequent research efforts in deep learning, including the

development of even deeper neural networks and the use of residual connections to improve gradient flow

and training stability.

ResNet

ResNet (short for “Residual Neural Network”) is a family of deep convolutional neural networks

designed to overcome the problem of vanishing gradients that are common in very deep networks. Theidea

behind ResNet is to use “residual blocks” that allow for the direct propagation of gradients throughthe

network, enabling the training of very deep networks.

B.Tech–CSE R-20

DeepLearning

A residual block consists of two or more convolutional layers followed by an activation function,

combined with a shortcut connection that bypasses the convolutional layers and adds the original input

directly to the output of the convolutional layers after the activation function.

This allows the network to learn residual functions that represent the difference between the

convolutional layers’ input and output, rather than trying to learn the entire mapping directly. The use of

residual blocks enables the training of very deep networks, with hundreds or thousands of layers,

significantly alleviating the issue of vanishing gradients.

GoogLeNet

GoogLeNet is a deep convolutional neural network developed by researchers at Google. It was

introduced in 2014 and won the ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)that year,

with a top-five error rate of 6.67%.

GoogLeNet is notable for its use of the Inception module, which consists of multiple parallel

convolutional layers with different filter sizes, followed by a pooling layer, and concatenation of the

outputs. This design allows the network to learn features at multiple scales and resolutions, while keeping

the computational cost manageable. The network also includes auxiliary classifiers at intermediate layers,

which encourage the network to learn more discriminative features and prevent overfitting.

GoogLeNet builds upon the ideas of previous convolutional neural networks, including LeNet,

which was one of the first successful applications of deep learning in computer vision. However,

GoogLeNet is much deeper and more complex than LeNet.

B.Tech–CSE R-20

DeepLearning

Dropout:

B.Tech–CSE R-20

DeepLearning

The term “dropout” refers to dropping out the nodes (input and hidden

layer) in a neural network (as seen in Figure 1). All the forward and backwards

connections with a dropped node are temporarily removed, thus creating a

newnetworkarchitectureoutoftheparentnetwork.Thenodesaredroppedby a

dropout probability of p.

Considergiveninputx:{1,2,3,4,5}tothefullyconnectedlayer.Wehave a

dropout layer with probability p = 0.2 (or keep probability = 0.8). During the

forward propagation (training) from the input x, 20% of the nodes would be

dropped, i.e. the x could become {1, 0, 3, 4, 5} or {1, 2, 0, 4, 5} and so on.

Similarly, it applied to the hidden layers.

For instance, if the hidden layers have 1000 neurons (nodes) and a

dropout is applied with drop probability = 0.5, then 500 neurons would be

randomly dropped in every iteration (batch).

Generally, for the input layers, the keep probability, i.e. 1- drop

probability, is closer to 1, 0.8 being the best as suggested by the authors. For

the hidden layers, the greater the drop probability more sparse the model,

where 0.5 is the most optimised keep probability, that states dropping 50% of

the nodes.

HowdoesDropoutsolvetheOverfittingproblem?

In the overfitting problem, the model learns the statistical noise. To be

precise, the main motive of training is to decrease the loss function, given all

the units (neurons). So in overfitting, a unit may change in a way that fixes up

themistakesoftheother units.Thisleadstocomplexco-adaptations,whichin

B.Tech–CSE R-20

DeepLearning

turn leads to the overfitting problem because this complex co-adaptation fails

to generalise on the unseen dataset.

Now, if we use dropout, it prevents these units to fix up the mistake of

otherunits,thuspreventingco-adaptation,asineveryiterationthepresenceof a unit

is highly unreliable. So, by randomly dropping a few units (nodes), it forces the

layers to take more or less responsibility for the input by taking a probabilistic

approach.

This ensures that the model is getting generalised and hence reducing

the overfitting problem.

Figure2:(a)Hiddenlayerfeatureswithoutdropout;

(b)Hiddenlayerfeatureswithdropout

Fromfigure2,wecaneasilymakeoutthatthehiddenlayerwithdropout is

learning more of the generalised features than the co-adaptations in the layer

without dropout. It is quite apparent, that dropout breaks such inter-unit

relations and focuses more on generalisation.

B.Tech–CSE R-20

DeepLearning

DropoutImplementation

Figure3:(a)Aunit(neuron)duringtrainingispresentwitha probability p and is

connected to the next layer with weights ‘w’;

(b) A unitduring inference/prediction is always present and is

connected to the next layer with weights, ‘pw’

In the original implementation of the dropout layer, during training, a

unit (node/neuron) in a layer is selected with a keep probability (1-drop

probability). This creates a thinner architecture in the given training batch, and

every time this architecture is different.

Inthestandardneuralnetwork,duringtheforwardpropagationwehave the

following equations:

Figure4:Forwardpropagationofastandardneuralnetwork

where:

z:denotethevectorofoutputfromlayer(l+1)beforeactivation y:

denote the vector of outputs from layer l

w:weightofthelayerl b:

bias of the layer l

B.Tech–CSE R-20

DeepLearning

Further, with the activation function, z is transformed into the output for

layer (l+1). Now, if we have a dropout, the forward propagation equations

change in the following way:

Figure5:Forwardpropagationofalayerwithdropout

So, before we calculatez,the input to the layer is sampled and multiplied

element-wise with the independent Bernoulli variables.rdenotes the Bernoulli

random variables each of which has a probability p of being 1.

Basically,racts as a mask to the input variable, which ensures only a few

unitsarekeptaccordingtothekeepprobabilityofadropout.Thisensuresthat we

have thinned outputs “y(bar)”, which is given as an input to the layer during

feed-forward propagation.

Training Deep Neural Networks is a difficult task that involves several

problems to tackle. Despite their huge potential, they can be slow and be

prone to overfitting. Thus, studies on methods to solve these problems are

constant in Deep Learning research.

Batch Normalization – commonly abbreviated as Batch Norm – is one of

thesemethods.Currently,itisawidelyusedtechniqueinthefieldofDeep

B.Tech–CSE R-20

DeepLearning

Learning.ItimprovesthelearningspeedofNeuralNetworksandprovides regularization,

avoiding overfitting.

Normalization:

Normalization is a pre-processing technique used to standardize data.In

other words, having different sources of data inside the same range. Not

normalizing the data before training can cause problems in our network, making it

drastically harder to train and decrease its learning speed.

For example, imagine we have a car rental service. Firstly, we want to

predict a fair price for each car based on competitors’ data. We have two features

per car: the age in years and the total amount of kilometers it has been driven for.

These can have very different ranges, ranging from 0 to 30 years, while distance

couldgo from0up tohundredsofthousandsofkilometers.Wedon’twantfeatures to

have these differences in ranges, as the value with the higher range might bias our

models into giving them inflated importance.

There are two main methods to normalize our data. The moststraightforward

method is to scale it to a range from 0 to 1. The data point to normalize,the mean of

the data set,the highest value, andthe lowest value. This technique is generally used

in the inputs of the data. The non- normalized data points with wide ranges can

cause instability in Neural Networks. The relatively large inputs can cascade down

to the layers, causing problems such as exploding gradients.

Theother techniqueused to normalize datais forcing thedatapoints to have a

mean of 0 and a standard deviation of 1, using the following formula:

beingthe data point to normalize,the mean of the data set, andthe standard

deviation of the data set. Now, each data point mimics a standard normal

B.Tech–CSE R-20

DeepLearning

distribution.Havingallthefeaturesonthisscale,noneofthemwillhaveabias, and

therefore, our models will learn better.

InBatchNorm,weusethislasttechniquetonormalizebatchesofdata inside

the network itself.

BatchNormalization

Batch Norm is a normalization technique done between the layers of a

NeuralNetwork instead of in the raw data. It isdone along mini-batches instead

of the full data set. It serves to speed up training and use higher learning rates,

making learning easier.

Following thetechniqueexplained in theprevioussection,wecandefinethe

normalization formula of Batch Norm as:

beingmzthe mean of the neurons’ output and szthe standard deviation of the

neurons’ output.

HowIs ItApplied?

Thefollowingimagerepresentsaregularfeed-forwardNeural Network:are

the inputs,the output of the neurons,the output of the activation functions,

andthe output of the network:

https://www.baeldung.com/wp-content/uploads/sites/4/2020/10/neural-network.png

B.Tech–CSE R-20

DeepLearning

Batch Norm–in the image represented with a red line–is applied to the

neurons’outputjustbeforeapplyingtheactivationfunction.Usually,aneuronwithout

BatchNormwouldbecomputedasfollows:

beingthelineartransformationofthe neuron, theweightsoftheneuron,

thebiasoftheneurons,and theactivationfunction.Themodellearnsthe

parameters and. Adding Batch Norm, it looks as:

being the output of Batch Norm, the mean of the neurons’

output,thestandarddeviationoftheoutputoftheneurons,and learningparametersof

Batch Norm. Note that the bias of the neurons () is removed. This is because as we

subtractthemean ,anyconstantoverthevaluesof z–suchas b–canbe ignored as it will

be subtracted by itself.

The parameters and shift the mean and standard deviation,

respectively. Thus, the outputs of Batch Norm over a layer result in a distribution

withameanandastandarddeviationof .Thesevaluesarelearnedover epochs and the

other learning parameters, such as the weights of the neurons, aiming to decrease

the loss of the model.

DataAugmentation:

Algorithms can use machine learning to identify different objects and classify

them for image recognition. This evolving technology includes using Data

Augmentation to produce better-performing models. Machine learning models need

to identify an object in any condition, even if it is rotated, zoomed in, or a grainy

image. Researchers needed an artificial way of adding training data with realistic

modifications.

Data augmentation is the addition of new data artificially derived from existing

trainingdata.Techniquesinclude resizing, flipping, rotating, cropping, padding,etc. It

B.Tech–CSE R-20

DeepLearning

helps to address issues like overfitting and data scarcity, and it makes the model

robust with better performance. Data Augmentation provides many possibilities to

alter the original image and can be useful to add enough data for larger models.

DataAugmentationinaCNN:

Convolutional Neural Networks (CNNs) can do amazing things if there is

sufficient data. However, selecting the correct amount of training data for allof

the features that need to be trained is a difficult question. If the user does not

have enough, the networkcanoverfiton the trainingdata.Realisticimages

contain a variety of sizes, poses, zoom, lighting, noise, etc.

To make the network robust to these commonly encountered factors,

the method of Data Augmentation is used. By rotating input images todifferent

angles, flipping images along different axes, or translating/cropping the images

the network will encounter these phenomena during training.

As more parameters are added to a CNN, it requires more examples to

show to the machine learning model. Deeper networks can have higher

performance, but the trade-off is increased training data needs and increased

training time.

DataAugmentationTechniques DataAugmentationFactor

Flipping 2-4x(ineachdirection)

Rotation Arbitrary

Translation Arbitrary

Scaling Arbitrary

SaltandPepperNoise Addition Atleast2x(dependsontheimplementation)

B.Tech–CSE R-20

DeepLearning

StellathePuppysittingonacarseat StellathePuppyFlippedovertheverticalaxis.

Atableoutliningthefactorbywhichdifferentmethodsmultiplytheexistingtraining data.

DataAugmentationTechniques:

Some libraries use Data Augmentation by actually copying the training

images and saving these copies as part of the total. This produces new training

examples to feed to the machine learning model. Other libraries simply define

a set of transformsto perform on the input training data. These transforms are

appliedrandomly.Asa result,the space the optimizer issearchingis increased.

Thishastheadvantagethatitdoesnotrequireextra diskspacetoaugmentthe

training.

ImageDataAugmentationinvolvesthetechniquessuchas

a) Flips:

By Flipping images, the optimizer will not become biased that particular

features of an image are only on one side. To do this augmentation, theoriginal

training image is flipped vertically or horizontally over one axis of the image. As

a result, the features continually change directions.

Flipping is a similar augmentation as rotation, however, it produces

mirrorimages.Aparticularfeaturesuchastheheadof apersoneitherstayson top,

on the left, on the right, or at the bottom of the image.

b) Rotation:

Rotation is an augmentation that is commonly performed at 90-degree

anglesbutcanevenhappenatsmallerorminuteanglesiftheneedformore

B.Tech–CSE R-20

DeepLearning

data is great. For rotation, the background color is commonly fixed so that it

can blend when the image is rotated. Otherwise, the model can assume the

background change is a distinct feature. This works best when the background

is the same in all rotated images.

 StellathePuppysittingonacarseatStella thePuppyrotated90 degrees.

Specific features move in rotations. For example, the head of a person

will be rotated 10, 22.7, or -8 degrees. However, rotation does not change the

orientation of the feature and will not produce mirror images like flips. This

helps models not consider the angle to be a distinct feature of the human.

c) Translation:

Translation of an image means shifting the main object in the image in

various directions. For example, consider a person in the canter with all their

parts visible in the frame and take it as a base image. Next, shift the person to

one corner with the legs cut from the bottom as one translated image.

B.Tech–CSE R-20

DeepLearning

d) Scaling:

Scaling provides more diversity in the training data of a machine learning

model. Scaling the image will ensure that the object is recognized by the network

regardlessof howzoomedin oroutthe image is. Sometimes the object istinyin the

center. Sometimes, the object is zoomed in the image and even cropped at some

parts.

e) Salt andPepperNoiseAddition

Salt and pepper noise addition is the addition of black and white dots (looking

like salt and pepper) to the image. This simulates dust and imperfections in real

photos. Even if the cameraof thephotographeris blurryorhasspots on it, the image

would be better recognized by the model. The training data set is augmented to train

the model with more realistic images.

onlypartlyvisible.

 Stella thePuppy sitting onacarseat Stella thePuppyscaleduptobeeven largerthan

sheis inreallife.

 StellathePuppysittingonacarseat StellathePuppywithSaltandPeppernoiseadded

totheimage

StellathePuppysittingonacarseat Stella thePuppytranslatedandcroppedsoshe’s

B.Tech–CSE R-20

DeepLearning

BenefitsofDataAugmentationinaCNN

• Prediction improvement in a model becomes more accurate because

DataAugmentationhelpsinrecognizingsamplesthemodelhasnever seen

before.

• There is enough data for the model to understand and train all the

availableparameters.Thiscanbeessentialinapplicationswheredata

collection is difficult.

• HelpspreventthemodelfromoverfittingduetoDataAugmentation

creating more variety in the data.

• Can save timeinareaswherecollectingmoredata istime-consuming.

• Can reducethecostrequiredforcollectingavarietyofdataifdata

collection is costly.

DrawbacksofDataAugmentation:

Data Augmentation is not useful when the variety required by the application

cannot be artificially generated. For example, if one were training a bird recognition

model and the training data contained only red birds. The training data could be

augmented by generating pictures with the color of the bird varied.

However, the artificial augmentation method may not capture the realisticcolor

details of birds when there is not enough variety of data to start with. For example, if

the augmentation method simply varied red for blue or green, etc. Realistic non-red

birds may have more complex color variations and the model may fail to recognize

the color. Having sufficient data is still important if one wants Data Augmentation to

work properly.

B.Tech–CSE R-20

DeepLearning

UNIT-III

RECURRENT NEURAL NETWORK (RNN): Introduction to

RNNs and their applications in sequential data analysis, Back

propagation through time (BPTT), Vanishing Gradient Problem,

gradient clipping Long Short-Term Memory (LSTM) Networks,

Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs.

IntroductiontoRNNsandtheirapplicationsin sequentialdataanalysis:

RecurrentNeuralNetwork (RNN) worksbetterthanasimpleneural network

 when data is sequential like Time-Series data and text data.

ADeepLearningapproachformodellingsequentialdataisRNN:

RNNs were the standard suggestion for working with sequential data

beforetheadventofattentionmodels.Specificparametersforeach

B.Tech–CSE R-20

DeepLearning

element of the sequence may be required by a deep feedforward model. It

may also be unable to generalize to variable-length sequences.

Recurrent Neural Networks use the same weights for each elementof

the sequence, decreasing the number of parameters and allowing the

model to generalize to sequences of varying lengths. RNNs generalize to

structured data other than sequential data, such as geographical or

graphical data, because of its design.

Recurrent neural networks, like many other deep learningtechniques,

are relatively old. They were first developed in the 1980s, but we didn’t

appreciate their full potential until lately. The advent of long short- term

memory (LSTM) in the 1990s, combined with an increase in computational

power and the vast amounts of data that we now have todeal with, has

really pushed RNNs to the forefront.

WhatisaRecurrentNeuralNetwork(RNN)?

Neural networks imitate the function of the human brain in the fieldsof

AI, machine learning, and deep learning, allowing computer programs to

recognize patterns and solve common issues.

RNNs are a type of neural network that can be used to model

sequence data. RNNs, which are formed from feedforward networks, are

similartohumanbrainsintheirbehaviour.Simplysaid,recurrentneural

B.Tech–CSE R-20

DeepLearning

networkscananticipatesequentialdatainawaythatotheralgorithmscan’t.

All of the inputs and outputs in standard neural networks are

independent of one another, however in some circumstances, such aswhen

predicting the next word of a phrase, the prior words are necessary, and so

the previous words must be remembered. As a result, RNN was created,

which used a Hidden Layer to overcome the problem. The most important

component of RNN is the Hidden state, which remembersspecific

information about a sequence.

RNNs have a Memory that stores all information about the

calculations. It employs the same settings for each input since it produces

the same outcome by performing the same task on all inputs or hidden

layers.

TheArchitectureofaTraditionalRNN

RNNs are a type of neural network that has hidden states and allows

past outputs to be used as inputs. They usually go like this:

B.Tech–CSE R-20

DeepLearning

RNN architecture can vary depending on the problem you’re trying to

solve. From those with a single input and output to those with many (with

variations between).

BelowaresomeexamplesofRNNarchitectures.

• One To One:There is only one pair here. A one-to-one architectureis

used in traditional neural networks.

• One To Many:A single input in a one-to-many network might resultin

numerous outputs. One too many networks are used in the

production of music, for example.

B.Tech–CSE R-20

DeepLearning

• Many To One: In this scenario, a single output is produced by

combining many inputs from distinct time steps. Sentiment analysis

andemotion identification usesuchnetworks,in which theclass label is

determined by a sequence of words.

• Many To Many:Formany tomany,therearenumerousoptions. Two

inputs yield three outputs. Machine translation systems, such as

English to French or vice versa translation systems, use many to

many networks.

HowdoesRecurrentNeuralNetworkswork?

The information in recurrent neural networks cycles through a loop to

the middle-hidden layer.

The input layer xreceives and processes the neural network’s input

before passing it on to the middle layer.

Multiple hidden layers can be found in the middle layer h, each with

its own activation functions,weights,and biases.Youcanutilizearecurrent

neural network if the various parameters of different hidden layers are not

impacted by the preceding layer, i.e. There is no memory in the neural

network.

B.Tech–CSE R-20

DeepLearning

The different activation functions, weights, and biases will be

standardized by the Recurrent Neural Network, ensuring that each hidden

layer has the same characteristics. Rather than constructing numerous

hidden layers, it will create only one and loop over it as many times as

necessary.

CommonActivationFunctions:

A neuron’s activation function dictates whether it should be turned on

or off. Nonlinear functions usually transform a neuron’s output to a number

between 0 and 1 or -1 and 1.

Thefollowingaresomeofthemostcommonlyutilizedfunctions:

• Sigmoid:Theformula g(z)=1/(1+e^-z)is usedtoexpress this.

• Tanh:Theformula g(z)=(e^-z–e^-z)/(e^-z+e^-z)isusedto express this.

• ReLu:The formula g(z)=max(0,z)is usedto express this.

ApplicationsofRNNNetworks:

B.Tech–CSE R-20

DeepLearning

1. MachineTranslation:

RNN can be used to build a deep learning model that can translatetext

from one language to another without the need for human intervention. You

can, for example, translate a text from your native language to English.

2. Text Creation:

RNNs can also be used to build a deep learning model for text

generation. Based on the previous sequence of words/characters used in the

text, a trained modellearns the likelihoodofoccurrenceofa word/character. A

model can be trained at the character, n-gram, sentence, or paragraph level.

3. Captioningofimages:

The process of creating text that describes the content of an image is

known as image captioning. The image's content can depict the object as

well as the action of the object on the image. In the image below, for

example,thetraineddeep learning modelusingRNNcandescribetheimage as

"A lady in a green coat is reading a book under a tree.”

4. RecognitionofSpeech:

This is also known asAutomatic Speech Recognition (ASR), and it is

capable of converting human speech into written or text format. Don't mix

up speech recognition and voice recognition; speech recognition primarily

focuses on converting voice data into text, whereas voice recognition

identifies the user's voice.

B.Tech–CSE R-20

DeepLearning

Speech recognition technologies that are used on a daily basis by

various users include Alexa, Cortana, Google Assistant, and Siri.

5. ForecastingofTimeSeries:

After being trained on historical time-stamped data, an RNN can be

used to create a time series prediction model that predicts the future

outcome. The stock market is a good example.

For example, Stock market data can be used to build a machine

learning model that can forecast future stock prices based on what the model

learns from historical data. This can assist investors in making data-driven

investment decisions.

RecurrentNeuralNetworkVsFeedforwardNeuralNetwork:

A feed-forward neural network has only one route ofinformation

flow: from the input layer to the output layer, passing through the hidden

layers. The data flows across the network in a straight route, never going

through the same node twice.

The information flow between an RNN and a feed-forward

neural network is depicted in the two figures below.

B.Tech–CSE R-20

DeepLearning

BackpropagationThroughTime-RNN:
Backpropagation is a training algorithm that we use for training neural

networks. When preparing a neural network, we are tuning the network's

weights to minimize the error concerning the available actual values with the

help of the Backpropagation algorithm. Backpropagation is a supervised learning

algorithm as we find errors concerning already given values.

The backpropagation training algorithm aims to modify the weights of a

neural network to minimize the error of the network results compared to some

expected output in response to corresponding inputs.

Feed-forward neural networks are poor predictions of what will

happen next because theyhave no memoryof the information theyreceive.

Because it simply analyses the current input, a feed-forward network hasno

idea of temporal order. Apart from its training, it has no memory of what

transpired in the past.

The information is in an RNN cycle via a loop. Before making a

judgment, it evaluates the current input as well as what it has learned from

past inputs. A recurrent neural network, on the other hand, may recall due

to internal memory. It produces output, copies it, and then returns it to the

network.

B.Tech–CSE R-20

DeepLearning

ThegeneralalgorithmofBackpropagationisasfollows:
1. We first train input data and propagate it through the network to get

an output.
2. Compare the predicted outcomes to the expected results and calculate

the error.
3. Then,wecalculatethederivativesoftheerrorconcerningthenetwork

weights.
4. We use these calculated derivatives to adjust the weights to minimize

the error.
5. Repeattheprocessuntiltheerrorisminimized.

In simple words, Backpropagation is an algorithm where the informationof

cost function is passed on through the neural network in the backward direction.

The Backpropagation training algorithm is ideal for training feed- forward neural

networks on fixed-sized input-output pairs.

UnrollingTheRecurrentNeuralNetwork

Recurrent Neural Network deals with sequential data. RNN predicts

outputs using not only the current inputs but also by considering those that

occurred before it. In other words, the current outcome depends on the current

production and a memory element (which evaluates the past inputs).

ThebelowfiguredepictsthearchitectureofRNN.

We use Backpropagation for training such networks with a slight change.

We don't independently train the network at a specific time "t." We train it at

aparticulartime"t"aswellasallthathashappenedbeforetime"t"liket-1,t-2,t-3.

S1, S2, S3are the hidden states at time t1, t2, t3, respectively, andWs is

theassociated weight matrix.

B.Tech–CSE R-20

DeepLearning

BackpropagationThroughTime

Ws, Wx, and Wy do not change across the timestamps, which means

thatfor all inputs in a sequence, the values of these weights are the same.

Theerrorfunctionisdefinedas:

Thepointstoconsiderare:

Whatisthetotallossforthisnetwork?

Howdoweupdatetheweights,Ws,Wx,andWy?

The total loss we have to calculate is the sum in overall timestamps, i.e.,

E0+E1+E2+E3+...Now tocalculatetheerrorgradientconcerning Ws,Wx,andWy. It is

relatively easy to calculate the loss derivative concerning Wy as the derivative

only depends on the current timestamp values.

Formula:

To calculate the error, we take the output and calculate its

errorconcerning the actual result, but we have multiple outputs at each

timestamp.Thus, the regular Backpropagation won't work here. Therefore, we

modify thisalgorithm and call the new algorithm as Backpropagation through

time.

x1, x2, x3are the inputs at time t1, t2, t3, respectively, and Wxis the associated

weight matrix.

Y1, Y2, Y3are the outcomes at time t1, t2, t3, respectively, and Wyis the

associated weight matrix.

At time t0, we feed input x0 to the network and output y0. At time t1, we

provideinputx1tothenetworkandreceiveanoutputy1.Fromthefigure,wecan see

that to calculate the outcome. The network uses input x and the cell state from

the previous timestamp. To calculate specific Hidden state and output at each

step, here is the formula:

B.Tech–CSE R-20

DeepLearning

ThencalculatingthederivativeoflossconcerningWsandWx,becomescomplex.

Formula:

The value of s3depends on s2, which is a function of Ws. Therefore, we

cannot calculate the derivative of s3, taking s2as constant. In RNN networks, the

derivative has two parts, implicit and explicit. We assume all other inputs as

constant in the explicit part, whereas we sum over all the indirect paths in the

implicit part.

Thegeneralexpressioncanbewrittenas:

Similarly,forWx,itcanbewrittenas:

Now that we have calculated allthree derivatives,we can easilyupdate the

weights. This algorithm is known as Backpropagation through time (BPTT), aswe

used values across all the timestamps to calculate the gradients.

Thealgorithmataglance:

• Wefeedasequenceoftimestampsofinputandoutputpairstothe network.

• Then,weunrollthenetworkthencalculateandaccumulateerrors across

each timestamp.

B.Tech–CSE R-20

DeepLearning

• Finally,werollupthenetworkandupdateweights.

• Repeattheprocess.

Limitationsof BPTT:
BPTT has difficulty with local optima. Local optima are a more significant

issue with recurrent neural networks than feed-forward neural networks. The

recurrent feedback in such networks creates chaotic responses in the error

surface,which causeslocal optima to occur frequentlyandinthe wrong locations

on the error surface.

When using BPTT in RNN, we face problems such as exploding gradient

and vanishing gradient. To avoid issues such as exploding gradient, we use a

gradient clipping method to check if the gradient value is greater than the

threshold or not at each timestamp. If it is, we normalize it. This helps to tackle

exploding gradient.

We can use BPTT up to a limited number of steps like 8 or 10. If we

backpropagate further, the gradient becomes too negligible and is a Vanishing

gradient problem. To avoid the vanishing gradient problem, some of the possible

solutions are:

• Using ReLU activation function in place of tanh or sigmoid activation

function.

• Properinitializingthe weightmatrixcanreducetheeffectofvanishing

gradients. For example, using an identity matrix helps us tackle this

problem.

• UsinggatedcellssuchasLSTMorGRUs.

VanishingGradientProblem:

Thegradient descentalgorithmfindstheglobal minimumof thecostfunctionthat is

going to be an optimal setup for the network. Information travels through the neural

network from input neurons to the output neurons, while the error is calculated and

propagated back through the network to update the weights.

ItworksquitesimilarlyforRNNs,butadditionaltasksinclude:

https://en.wikipedia.org/wiki/Gradient_descent

B.Tech–CSE R-20

DeepLearning

• Firstly, information travels through time in RNNs, which means that

informationfromprevioustimepointsisusedasinputforthenexttime points.

• Secondly,wecancalculatethecostfunction,ortheerror,ateachtimepoint.

Basically, during the training, your cost function compares your outcomes (red

circles on the image below) to your desired output. As a result, you have these values

throughout the time series, for every single one of these red circles.

The focus is on one error term et. We calculate the cost function et and then

propagate the cost function back through the network because of the need to updatethe

weights.

Essentially, every single neuron that participated in the calculation of the

output, associated with this cost function, should have its weight updated in order to

minimize that error. And the thing with RNNs is that it’s not just the neurons directly

belowthisoutputlayer thatcontributedbutall of theneuronsfarbackintime.So, you have

to propagate all the way back through time to these neurons.

The problem relates to updating wrec (weight recurring) – the weight that isused

to connect the hidden layers to themselves in the unrolled temporal loop.

For instance, to get from xt-3 to xt-2 we multiply xt-3 by wrec. Then, to get from

xt-2 to xt-1 we again multiply xt-2 by wrec. So, we multiply with the same exact weight

multipletimes, andthisiswherethe problemarises:when we multiplysomethingbya small

number, the value decreases very quickly.

B.Tech–CSE R-20

DeepLearning

As we know, weights are assigned at the start of the neural network with the

random values, which are close to zero, and from there the network trains them up.

But, when you start with wrec close to zero and multiply xt, xt-1, xt-2, xt-3, … by this

value, your gradient becomes less and less with each multiplication.

Whatdoesthismeanforthenetwork?

The lower the gradient is, the harder it is for the network to update the weights

and the longer it takes to get to the final result.

For instance, 1000 epochs might be enough to get the final weight for the time

point t, but insufficient for training the weights for the time point t-3 due to a verylow

gradient at this point. However, the problem is not only that half of the network is not

trained properly.

The output of the earlier layers is used as the input for the further layers. Thus,

the training for the time point t is happening all along based on inputs that are coming

fromuntrained layers. So, because of the vanishing gradient, the whole network is not

being trained properly.

To sum up, if wrec is small, you have vanishing gradient problem, and if wrec

is large, you have exploding gradient problem. For the vanishing gradient problem,the

further you go through the network, the lower your gradient is and the harder it is to

train the weights, which has a domino effect on all of the further weightsthroughout

the network.

B.Tech–CSE R-20

DeepLearning

That was the main roadblock to using Recurrent Neural Networks. However,

the possible solutions to this problem are as follows:

Solutionstothevanishinggradientproblem

Incaseofexplodinggradient,youcan:

• Stopbackpropagatingafteracertainpoint,whichisusuallynotoptimal because not

all of the weights get updated.

• Penalizeorartificiallyreducegradient.

• Putamaximumlimitonagradient.

Incaseofvanishinggradient,youcan:

• Initializeweightssothatthepotentialforvanishinggradientisminimized.

• HaveEchoStateNetworksthataredesignedtosolvethevanishinggradient problem.

• HaveLongShort-TermMemoryNetworks(LSTMs).

GradientclippingLongShort-TermMemory(LSTM)Networks:

Training a neural network can become unstable given the choice of error

function, learning rate, or even the scale of the target variable. Large updates to

weightsduringtrainingcancausea numericaloverfloworunderflowoften referred to as

“Exploding Gradients.”

The problem of exploding gradients is more common with recurrent neural

networks, such as LSTMs given the accumulation ofgradients unrolled overhundreds

of input time steps.

A common and relatively easy solution to the exploding gradients problem isto

change the derivative of the error before propagating it backward through the network

and using it to update the weights. Two approaches include rescaling the gradients

given a chosen vector norm and clipping gradient values that exceed a preferred range.

Together, these methods are referred to as “Gradient Clipping.”

• Trainingneuralnetworkscanbecomeunstable,leadingtoanumerical overflow

or underflow referred to as exploding gradients.

B.Tech–CSE R-20

DeepLearning

• The training process can be made stable by changing the error gradients

either by scaling the vector norm or clipping gradient values to a range.

• How to update anMLP model for aregression predictive modeling problem

with exploding gradients to have a stable training process using gradient

clipping methods?

ExplodingGradientsandClipping

Neural networks are trained using the stochastic gradient descentoptimization

algorithm. This requires first the estimation of the loss on one or more training

examples, then the calculation of the derivative of the loss, which is propagated

backward through the network in order to update the weights. Weights are updated

using a fraction of the back propagated error controlled by the “LearningRate”.

It is possible for the updates to the weights to be so large that the weights

either overflow or underflow their numerical precision. In practice, the weights can

take on the value of an “NaN” or “Inf” when they overflow or underflow and for

practical purposes the network will be useless from that point forward, forever

predicting NaN values as signals flow through the invalid weights.

The difficulty that arises is that when the parameter gradient is very large, a

gradient descent parameter update could throw the parameters very far, into aregion

where the objective function is larger, undoing much of the work that hadbeen done

to reach the current solution.

The underflow or overflowof weights generally refers to asan instability of the

network training process and is known by the name “exploding gradients” as the

unstable training process causes the network to fail to train in such a way that the

model is essentially useless.

In a given neural network, such as a Convolutional Neural Network or

Multilayer Perceptron, this can happen due to a poor choice of configuration. Some

examples include:

• Poorchoiceoflearningratethatresultsinlargeweight updates.

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/

B.Tech–CSE R-20

DeepLearning

• Poor choice of data preparation, allowing large differences in the target

variable.

• Poorchoiceoflossfunction,allowingthecalculationof largeerrorvalues.

Exploding gradients is also a problem in recurrent neural networks such as the

LongShort-TermMemorynetworkgiventheaccumulationoferrorgradientsin the unrolled

recurrent structure.

Exploding gradients can be avoided in general by careful configuration of the

networkmodel,suchaschoiceofsmalllearningrate,scaledtargetvariables,and astandard

loss function. Nevertheless, exploding gradients may still be an issue with recurrent

networks with a large number of input time steps.

One difficulty when training LSTM with the full gradient is that the derivatives

sometimes become excessively large, leading to numerical problems. To prevent

this, [we] clipped the derivative of the loss with respect to the network inputs to the

LSTM layers (before the sigmoid and tanh functions are applied) to lie within a

predefined range.

A common solution to exploding gradients is to change the error derivative

before propagating it backward through the network and using it to update the

weights. By rescaling the error derivative, the updates to the weights will also be

rescaled, dramatically decreasing the likelihood of an overflow or underflow.

Therearetwo mainmethodsforupdatingtheerrorderivativeasfollows:

• GradientScaling.

• GradientClipping.

Gradient scaling involves normalizing the error gradient vector such thatvector

norm (magnitude) equals a defined value, such as 1.0. One simplemechanism to

deal with a sudden increase in the norm of the gradients is to rescale them whenever

they go over a threshold

Gradient clipping involves forcing the gradient values (element-wise) to a

specific minimum or maximum value if the gradient exceeded an expected

range.Together, these methods are often simply referred to as “gradient clipping.”

https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/rnn-unrolling/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

B.Tech–CSE R-20

DeepLearning

When the traditional gradient descent algorithm proposes to make a verylarge

step, the gradient clipping heuristic intervenes to reduce the step size to be small

enough that it is less likely to go outside the region where the gradientindicates the

direction of approximately steepest descent. It is a method that only addresses the

numerical stability of training deep neural network models and does not offer any

general improvement in performance.

The value for the gradient vector norm or preferred range can be configuredby

trial and error, by using common values used in the literature or by first observing

common vector norms or ranges via experimentation and then choosing a sensible

value.

Experimental analysis reveals that for a given task and model size, training is

not very sensitive to this [gradient norm] hyperparameter and the algorithm behaves

well even for rather small thresholds.

It is common to use the same gradient clipping configuration for all layers in

the network. Nevertheless, there are examples where a larger range of error

gradients are permitted in the output layer compared to hidden layers.

The output derivatives […]were clipped in the range [−100, 100], and the LSTM

derivatives were clipped in the range [−10, 10]. Clipping the output gradients proved

vital for numerical stability; even so, the networks sometimes had numerical

problems late on in training, after they had started overfitting on the training data.

GatedRecurrentUnit(GRU):

A Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN) architecture

type. Like other RNNs, a GRU can process sequential data such as time series, natural

language, and speech. The main difference between a GRU and other RNN architectures,

such as the Long Short-Term Memory (LSTM) network, is how the network handles

information flow through time.

Example:

"Mymom gavemea bicycleonmy birthdaybecauseshe knew thatI wanted to go biking with
my friends."

B.Tech–CSE R-20

DeepLearning

As it can be observed from the above sentence, words that affect each other can be
further apart. For example, "bicycle" and "go biking" are closely related but are placed
further apart in the sentence. An RNN network finds tracking the state with such a long
context difficult. It needs to find out what information is important. However, a GRU cell
greatly alleviates this problem.

GRUnetworkwasinventedin2014.Itsolvesproblemsinvolvinglongsequenceswith

contextsplacedfurtherapart,liketheabovebikingexample.Thisispossiblebecauseofhow the

GRU cell in the GRU architecture is built.

UnderstandingtheGRUCell:

The GRU cell is the basic building block of a GRU network. It comprises three main

components: an update gate, a reset gate, and a candidate hidden state.

One of the key advantages of the GRU cell is its simplicity. Since it has fewer

parameters than a long short-term memory (LSTM) cell, it is faster to train and run and less

prone to overfitting.

Additionally, one thing to remember is that the GRU cell architecture is simple, the

cell itself is a black box, and the final decision on how much we should consider the past

state and how much should be forgotten is taken by this GRU cell.

GRUvsLSTM

 GRU LSTM

Structure
Simplerstructurewithtwogates

(update and reset gate)

More complexstructurewiththree gates

(input, forget, and output gate)

Parameters
Fewer parameters (3 weight

matrices)
Moreparameters (4weight matrices)

B.Tech–CSE R-20

DeepLearning

 GRU LSTM

Training Fastertotrain Slow to train
 Inmostcases,GRUtendtouse LSTMhasamorecomplexstructureand

Space

Complexity

fewermemoryresourcesduetoits

simpler structure and fewer
parameters,thusbettersuitedfor

alargernumberofparameters,thusmight

require more memory resources and
couldbelesseffectiveforlargedatasets

 largedatasetsorsequences. orsequences.
 Generallyperformedsimilarlyto

LSTM generally performs well on many

tasks but is more computationally

expensive and requires more memory

resources. LSTM has advantages over

GRU in natural language understanding

and machine translation tasks.

 LSTMonmanytasks,butinsome
 cases,GRUhasbeenshownto

Performance outperformLSTMandviceversa.
 It'sbettertotrybothandseewhich
 worksbetterforyourdatasetand
 task.

TheArchitectureofGRU

AGRUcellkeepstrackoftheimportantinformationmaintainedthroughoutthe network. A

GRU network achieves this with the following two gates:

inputs:

• ResetGate

• UpdateGate.

GivenbelowisthesimplestarchitecturalformofaGRUcell.AGRUcelltakestwo

1. Theprevioushiddenstate

2. Theinputinthecurrenttimestamp.

The cell combinestheseandpasses them through the update and reset gates. To get

the output in the current timestep, we must pass this hidden state through a dense layer

with softmax activation to predict the output. Doing so, a new hidden state is obtained and

then passed on to the next time step.

B.Tech–CSE R-20

DeepLearning

Updategate

An update gate determines what current GRU cell will pass information to the next

GRU cell. It helps in keeping track of the most important information.

Obtainingtheoutput oftheUpdateGateinaGRUcell:

The input to the update gate is the hidden layer at the previous timestep, h(t−1) and

the current input (xt). Both have their weights associated with them which are learned

during the training process. Let us say that the weights associated withh(t−1) isU(z), and that

of xtis Wz. The output of the update gate Ztis given by,

zt=σ(W(z)xt+U(z)h(t−1)

Resetgate

A reset gateidentifies the unnecessary information and decides what informationto

be laid off from the GRU network. Simply put, it decides what information to delete atthe

specific timestamp.

Obtainingtheoutput oftheResetGatein aGRUcell:

The input to the reset gate is the hidden layer at the previous timestep h(t−1)andthe

current input xt. Both have their weights associated withthem whichare learned during

thetrainingprocess.Letussaythattheweights associatedwith h(t−1)isUr,andthatof xt is Wr. The

output of the update gate rt is given by,

rt=σ(W(r)xt+U(r)h(t−1))

It is important to note that the weights associated with the hidden layer at the

previous timestep and the current input are different for both gates. The values for these

weights are learned during the training process.

HowDoesGRU Work?

Gated Recurrent Unit (GRU)networks process sequential data, such as time series or

natural language, bypassing the hidden state from one time step to the next. The hidden

state is a vector that captures the information from the past time steps relevant to the

currenttimestep.ThemainideabehindaGRUistoallowthenetworktodecidewhat

B.Tech–CSE R-20

DeepLearning

information from the last time step is relevant to the current time step and what

information can be discarded.

CandidateHiddenState

A candidate's hidden state is calculated from the reset gate. This is used todetermine

the information stored from the past. This is generally called the memory component in a

GRU cell. It is calculated by,

ht′=tanh(Wxt+rt⊙Uht−1)

Here,W-weightassociatedwiththecurrentinput

rt-Outputoftheresetgate

U-Weightassociatedwiththehiddenlayeroftheprevious timestep

ht-Candidatehiddenstate.

Hidden state

The following formula gives the new hidden state and depends on the update gate

and candidate hidden state.

ht=zt⊙ht−1+(1−zt)⊙ht′

Here,zt-OutputofupdategateKaTeXparseerror Expected'EOF'got'’'atposition2: h’t -

Candidate hidden state

ht−1-Hiddenstateattheprevious timestep

It can be observed that whenever ztis 0, the information at the previously hidden

layer gets forgotten. It is updated with the value of the new candidate hidden layer

(as1−ztwillbe1).If ztis1,thentheinformationfromthepreviously hidden layerismaintained.This

is how the most relevant information is passed from one state to the next.

ForwardPropagationinaGRUCell

InaGatedRecurrentUnit(GRU)cell,theforwardpropagationprocessincludes several
steps:

B.Tech–CSE R-20

DeepLearning

• Calculatetheoutput oftheupdategate(zt)usingtheupdategateformula:

• Calculatetheoutputoftheresetgate(rt)usingtheresetgateformula:

• Calculatethecandidate'shiddenstate.

B.Tech–CSE R-20

DeepLearning

• Calculatethenewhiddenstate.

This is how forward propagation happens in a GRU cell at a GRU network. Next, the

process of how the weights is learnt in a GRU network to make the right prediction have to

be understood.

BackpropagationinaGRUCell

Let eachhiddenlayer(orangecolour)representa GRUcell.

In the above image, it is observed that whenever the network predicts wrongly, the

network compares it with the original label, and the loss is then propagated throughout the

network.Thishappensuntilalltheweights'valuesareidentifiedsothatthevalueof theloss

function used to compute the loss is minimum. During this time, the weights and biases

associated with the hidden layers and the input are fine-tuned.

B.Tech–CSE R-20

DeepLearning

AnalogybetweenLSTMandGRUintermsofarchitectureandperformance:

LSTM and GRU are two types of recurrent neural networks (RNNs) that can handle

sequential data, such as text, speech, or video. They are designed to overcome the problem of

vanishing or exploding gradients that affect the training of standard RNNs. However, they

have different architectures and performance characteristics that make them suitable for

different applications. In this article, you will learn about the differences and similarities

between LSTM and GRU in terms of architecture and performance.

LSTMArchitecture

LSTM stands for long short-term memory, and it consists of a series of memory cells

that can store and update information over long time steps. Each memory cell has three

gates: an input gate, an output gate, and a forget gate. The input gate decides what

information to add to the cell state, the output gate decides what information to output

from the cell state, and the forget gate decides what information to discard from the cell

state. The gates are learned by the network based on the input and the previous hidden

state.

GRU Architecture

GRU standsfor gated recurrentunit, and it is asimplified versionof LSTM. It hasonly

two gates: a reset gate and an update gate. The reset gate decides how much of the

previous hidden state to keep, and the update gate decides how much of the new input to

incorporate into the hidden state. The hidden state also acts as the cell state and theoutput,

so there is no separate output gate. The GRU is easier to implement and requires fewer

parameters than the LSTM.

PerformanceComparison

The performance of LSTM and GRU depends on the task, the data, and the

hyperparameters. Generally, LSTM is more powerful and flexible than GRU, but it is also

more complex and prone to overfitting. GRU is faster and more efficient than LSTM, but it

may not capture long-term dependencies as well as LSTM. Some empirical studies have

shownthatLSTMandGRUperformsimilarlyonmanynaturallanguageprocessingtasks,

B.Tech–CSE R-20

DeepLearning

such as sentiment analysis, machine translation, and text generation. However, some tasks

may benefit from the specific features of LSTM or GRU, such as image captioning, speech

recognition, or video analysis.

SimilaritiesBetweenLSTMandGRU

Despite their differences, LSTM and GRU share some common characteristics that

makethembotheffectiveRNNvariants.Theybothusegatestocontroltheinformationflow and to

avoid the vanishing or exploding gradient problem. They both can learn long-term

dependencies and capture sequential patterns in the data. They both can be stacked into

multiple layers to increase the depth and complexity of the network.

They both can be combined with other neural network architectures, such as

convolutional neural networks (CNNs) or attention mechanisms, to enhance their

performance.

DifferencesBetweenLSTMandGRU

The main differences between LSTM and GRU lie in their architectures and their

trade-offs. LSTM has more gates and more parameters than GRU, which gives it more

flexibility and expressiveness, but also more computational cost and risk of overfitting. GRU

has fewer gates and fewer parameters than LSTM, which makes it simpler and faster, but

also less powerful and adaptable.

LSTM has a separate cell state and output, which allows it to store and output

different information, while GRU has a single hidden state that serves both purposes, which

may limit its capacity. LSTM and GRU may also have different sensitivities to the

hyperparameters, such as the learning rate, the dropout rate, or the sequence length.

BidirectionalLSTM
Introduction:

To understand the working of Bi-LSTM first, the working of the unit cell of LSTM

and LSTM network has to be understood. LSTM stands for long short-term memory. In

1977, Hochretier and Schmidhuber introduced LSTM networks. These are the most

commonly used recurrent neural networks.

B.Tech–CSE R-20

DeepLearning

NeedofLSTM
As the sequential data is better handled by recurrent neural networks, but

sometimes it is also necessary to store the result of the previous data. For example, “I

will play cricket” and “I can play cricket” are two different sentences with different

meanings. The meaning of the sentence depends on a single word so, it is necessary to

store the data of previous words. But no such memory is available in simple RNN. To

solve this problem, LSTM is adopted.

TheArchitectureoftheLSTMUnit

TheLSTMunithasthreegates.

a) Input gate
First, the current state x(t) and previous hidden state h(t-1) are passed into the

input gate, i.e., the second sigmoid function. The x(t) and h(t-1) values are transformed

between0and1,where 0isimportant,and1is notimportant.Furthermore,thecurrent and

hidden state information will be passed through the tanh function. The output from the

tanh function will range from -1 to 1, and it will help to regulate the network. The

output values generated from the activation functions are ready for point-by-point

multiplication.

b) Forgetgate
The forget gate decides which information needs to be kept for further

processing and which can be ignored. The hidden state h(t-1) and current input X(t)

informationarepassedthroughthesigmoidfunction.Afterpassingthevaluesthrough

B.Tech–CSE R-20

DeepLearning

thesigmoidfunction,itgeneratesvaluesbetween0and1thatconcludewhetherthe part of

the previous output is necessary (by giving the output closer to 1).

c) Output gate
The output gate helps in deciding the value of the next hidden state. This state

contains information on previous inputs. First, the current and previously hidden state

values are passed into the third sigmoid function. Then the new cell state generated

from the cell state is passed through the tanh function. Both these outputs aremultiplied

point-by-point. Based upon the final value, the network decides which information the

hidden state should carry. This hidden state is used for prediction.

Finally, the new cell state and the new hidden state are carried over to the next

step. To conclude, the forget gate determines which relevant information from the prior

steps is needed. The input gate decides what relevant information can be added fromthe

current step, and the output gates finalize the next hidden state.

HowdoLSTMwork?

TheLengthyShortTermMemoryarchitecture wasinspiredbyanexaminationof

error flow in current RNNs, which revealed that long time delays were inaccessible to

existing designs due to backpropagated error, which either blows up or decays

exponentially.

An LSTM layer is made up of memory blocks that are recurrently linked. These

blocks can be thought of as a differentiable version of a digital computer's memory

chips. Each one has recurrently connected memory cells as well as three multiplicative

units – the input, output, and forget gates – that offer continuous analogs of the cells'

write, read, and reset operations.

WhatisBi-LSTM?

Bidirectional LSTM networks function by presenting each training sequence

forward and backward to two independent LSTM networks, both of which are coupled

to the same output layer. This means that the Bi-LSTM contains comprehensive,

sequential information about all points before and after each point in a particular

sequence.

In other words, rather than encoding the sequence in the forward direction only,

weencodeitinthebackwarddirectionaswellandconcatenatetheresultsfromboth

B.Tech–CSE R-20

DeepLearning

forwardandbackwardLSTMateachtimestep.Theencodedrepresentationofeach word now

understands the words before and after the specific word.

BelowisthebasicarchitectureofBi-LSTM.

WorkingofBi-LSTM:

Consider the sentence “I will swim today”. The below image represents the

encoded representation of the sentence in the Bi-LSTM network.

So, when forward LSTM occurs, “I” will be passed into the LSTM network at timet

= 0, “will” at t = 1, “swim” at t = 2, and “today” at t = 3. In backward LSTM “today” will be

passedinto the network at time t = 0, “swim” at t = 1, “will” at t = 2, and“I” at t = 3. In this

way, both the results of forward and backward LSTM at each time step are calculated.

B.Tech–CSE R-20

DeepLearning

UNIT-IV

GENERATIVEADVERSARIALNETWORKS(GANS):

Generativemodels,Conceptandprinciplesof GANs,Architecture of

GANs (generator and discriminator networks), Comparison

between discriminative and generative models, Generative

Adversarial Networks (GANs), Applicationsof GANs

GenerativeAdversarialNetworksanditsmodels

Introduction:

Generative Adversarial Networks (GANs) were developed in 2014 by Ian

Goodfellow and his teammates. GAN is basically an approach to generativemodeling

that generates a new set of data based on training data that look like training data.

GANs have two main blocks (two neural networks) which compete with each other

and are able to capture, copy, and analyze the variations in a dataset.The two

models are usually called Generator and Discriminator which we will coverin

Components on GANs. The term GAN can be separated into three parts.

• Generative – To learn a generative model, which describes how data is generated in

terms of a probabilistic model. In simple words, it explains how data is generated

visually.

B.Tech–CSE R-20

DeepLearning

• Adversarial –Thetrainingofthemodelisdoneinanadversarialsetting.

• Networks–Usedeepneuralnetworksfortrainingpurposes.

The generator network takes random input (typically noise) and generates

samples, such as images, text, or audio, that resemble the training data it

wastrainedon.The goalof the generatoristo produce samples that

areindistinguishable from real data.

The discriminator network, on the other hand, tries to distinguish between real

and generated samples. It is trained with real samples from the training data and

generated samples from the generator. The discriminator’s objective is to correctly

classify real data as real and generated data as fake.

The training process involves an adversarial gamebetweenthe generator and

the discriminator. The generator aims to produce samples that fool the discriminator,

while the discriminator tries to improve its ability to distinguish between real and

generated data. This adversarial training pushes both networks to improve over time.

As training progresses, the generator becomes more adept at producing

realistic samples, while the discriminator becomes more skilled at differentiating

between real and generated data. Ideally, this process converges to a point where

the generator is capable of generating high-quality samples that are difficult for the

discriminator to distinguish from real data.

GANs have demonstrated impressive results in various domains, such as

image synthesis, text generation, and even video generation. They have been used

for tasks like generating realistic images, creating deepfakes, enhancing low-

resolution images, and more. GANs have greatly advanced the field of generative

modeling and have opened up new possibilities for creative applications in artificial

intelligence.

B.Tech–CSE R-20

DeepLearning

WhyGANs wasDeveloped?

Machine learning algorithms and neural networks can easily be fooled to

misclassify things by adding some amount of noise to data. After adding some

amountof noise, the chancesof misclassifyingthe imagesincrease.Hence the small

rise that, is it possible to implement something that neural networks can start

visualizing new patterns like sample train data. Thus, GANs were built that generate

new fake results similar to the original.

ComponentsofGenerativeAdversarialNetworks(GANs):

WhatisGeometricIntuitionbehindtheworkingofGANs?

Two major components of GANs are Generator and Discriminator. The role of

the generator is like a thief to generate the fake samples based on the original

sample and make the discriminator fool to understand Fake as real. On the other

hand, a Discriminator is like a Police whose role is to identify the abnormalities in the

samples created by Generator and classify them as Fake or real. This competition

between both the component goes on until the level of perfection is achieved where

Generator wins making a Discriminator fool on fake data.

B.Tech–CSE R-20

DeepLearning

1) Discriminator –It is a supervised approach means It is a simple classifier that

predicts data is fake or real. It is trained on real data and provides feedback to a

generator.

2) Generator –It is an unsupervised learning approach. It will generate data that is

fake data based on original(real) data. It is also a neural network that has hidden

layers, activation, loss function. Its aim is to generate the fake image based on

feedback and make the discriminator fool that it cannot predict a fake image. And

when the discriminator is made a fool by the generator, the training stops and wecan

say that a generalized GAN model is created.

Here, the generative model captures the distribution of data and is trained in

such a manner to generate the new sample that tries to maximize the probability of

the discriminator to make a mistake (maximize discriminator loss). The discriminator

on other hand is based on a model that estimates the probability that the sample it

receives is from training data not from the generator and tries to classify it accurately

and minimize the GAN accuracy. Hence the GAN network is formulated as aminimax

game where the Discriminator is trying to minimize its reward V(D, G)and the

generator is trying to maximize the Discriminator loss.

Thebelowfigureaddressestheconstraints

How is an actual architecture of GAN?

B.Tech–CSE R-20

DeepLearning

Howtwoneuralnetworksarebuildandtrainingandpredictionis done?

Both the components are neural networks.The generator output is directly

connected to the input of the discriminator. And discriminator predicts it and through

backpropagation, the generator receives a feedback signal to update weights and

improve performance. The discriminator is a feed-forward neural network.

Training&PredictionofGenerativeAdversarialNetworks(GANs):

Step-1) Define a Problem

The problem statement is key to the success of the project so the first step is

to define the problem. GANs work with a different set of problems you are aiming so

you need to define What you are creating like audio, poem, text, Image is a type of

problem.

Step-2)SelectArchitectureofGAN

There are many different types of GAN & based on the scenario(s), a suitable

GANarchitecture is chosen.

Step-3)TrainDiscriminatoronRealDataset

Now, Discriminator is trained on a real dataset. It is only having a

forwardpath.NobackpropagationisthereinthetrainingoftheDiscriminatorinnepochs.

B.Tech–CSE R-20

DeepLearning

And the provided Data is without Noise and only contains real images, and for

fakeimages, Discriminator uses instances created by the generator as negative

output.

DiscriminatorTraining:

• Itclassifiesbothrealandfakedata.

• Thediscriminatorlosshelpsimproveitsperformanceandpenalizeitwhenit misclassifies

real as fake or vice-versa.

• weightsofthediscriminatorareupdatedthroughdiscriminatorloss.

Step-4)Train Generator

Provide some Fake inputs for the generator (Noise) and it will use some

random noise and generate some fake outputs. when Generator is trained,

Discriminator is Idle and when Discriminator is trained, Generator is Idle. During

generator training through any random noise as input, it tries to transform it into

meaningful data. to get meaningful output from the generator takes time and runs

under many epochs. Steps to train a generator are listed below.

• Getrandomnoiseandproduce ageneratoroutput on noisesample

• Predictgeneratoroutputfromdiscriminatorasoriginalorfake.

• Calculatediscriminatorloss.

• Performbackpropagationthroughdiscriminator,andgeneratorbothtocalculategradients.

• Usegradientstoupdategenerator weights.

Step-5)TrainDiscriminatoronFakeData

The samples which are generated by Generator will pass to Discriminator and

It will predict the data passed to it is Fake or real and provide feedback to Generator

again.

B.Tech–CSE R-20

DeepLearning

Step-6)TrainGeneratorwiththeoutputofDiscriminator

Again, Generator will be trained on the feedback given by Discriminator andtry

to improve performance. This is an iterative process and continues running until the

Generator is not successful in making the discriminator fool.

GenerativeAdversarialNetworks(GANs)LossFunction:

The loss function is used in minimize and maximize of the iterative process.

The generator tries to minimize the following loss function while the discriminatortries

to maximize it. It is the same as a minimax game if you have ever played.

• D(x)isthediscriminator’sestimateoftheprobabilitythatrealdatainstancexis real.

• Existhe expectedvalueoverall realdatainstances.

• G(z)isthe generator’soutput when given noisez.

• D(G(z))isthediscriminator’sestimateoftheprobabilitythatafakeinstanceis real.

• Ez istheexpectedvalueoverallrandominputstothegenerator(ineffect,theexpected value

over all generated fake instances G(z)).

B.Tech–CSE R-20

DeepLearning

ChallengesFacedbyGenerative AdversarialNetworks (GANs):

1. The problem of stability between generator and discriminator. The

discriminator should not be too strict nor too lenient.

2. Problem to determine the positioning of objects - Suppose in a picture wehave

3 horse and generator have created 6 eyes and 1 horse.

3. The problem in understanding the global objects –GANs do not understand

the global structure or holistic structure which is similar to the problem of

perspective. It means sometimes GAN generates an image that is unrealistic

and cannot be possible.

4. Problem in understanding the perspective - It cannot understand the 3-d

images and if we train it on such types of images then it will fail to create 3-d

images because today GANs are capable to work on 1-d images.

DifferentTypesofGenerativeAdversarialNetworks(GANs):

1) DC GAN –It is a Deep convolutional GAN. It is one of the most used, powerful,

and successful typesof GANarchitecture.It is implemented with help of ConvNets in

place ofaMulti-layeredperceptron.The ConvNetsusea convolutionalstrideandare built

without max pooling and layers in this network are not completely connected.

2) Conditional GAN and Unconditional GAN (CGAN) –Conditional GAN is deep

learning neural network in which some additional parameters are used. Labels are

also put in inputs of Discriminator in order to help the discriminator to classify the

input correctly and not easily full by the generator.

3) Least Square GAN (LSGAN) –It is a type of GAN that adopts the least-square

lossfunctionforthediscriminator.Minimizingtheobjectivefunctionof LSGANresults in

minimizing the Pearson divergence.

B.Tech–CSE R-20

DeepLearning

4) Auxilary Classifier GAN (ACGAN) –It is the same as CGAN and an advanced

version of it. It says that the Discriminator should not only classify the image as real

or fake but should also provide the source or class label of the input image.

5) Dual Video Discriminator GAN –DVD-GAN is a generative adversarial network

for video generation built upon the BigGAN architecture. DVD-GAN uses two

discriminators: a Spatial Discriminator and a Temporal Discriminator.

6) Single Image Super Resolution GAN (SRGAN) – Its main function is to

transform low resolution to high resolution known as Domain Transformation.

7) Cycle GAN - It is released in 2017 which performs the task of Image Translation.

Suppose we have trained it on a horse image dataset and we can translate it into

zebra images.

8) Info GAN–Advance version of GAN which is capable to learn to disentangle

representationinanunsupervisedlearningapproach.

TopGenerativeAdversarialNetworksApplications:

1) Generate Examples for Image Datasets: GANs can be used to generate new

examples for image datasets in various domains, such as medical imaging, satellite

imagery,and naturallanguageprocessing.Bygeneratingsyntheticdata, researcherscan

augment existingdatasets and improve the performance of machine learning models.

2) Generate Photographs of Human Faces: GANs can generate realistic

photographs of human faces, including images of people who do not exist in the real

world. We can use these rendered images for various purposes, such as creating

avatars for online games or social media profiles.

3) Generate Realistic Photographs: GANs can generate realistic photographs of

various objects and scenes, including landscapes, animals, and architecture. These

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-natural-language-processing-nlp

B.Tech–CSE R-20

DeepLearning

renderedimagescanbeusedtoaugmentexistingimagedatasetsortocreateentirely new

datasets.

4) Generate Cartoon Characters: GANs can be used to generate cartoon

characters that are similar to those found in popular movies or television shows.

These developed characters can create new content or customize existingcharacters

in games and other applications.

5) Image-to-Image Translation: GANs can translate images from one domain to

another, such as convertinga photograph of a real-world scene intoa line drawingor a

painting. We can create new content or transform existing images in various ways.

6) Text-to-Image Translation: GANs can be used to generate images based on a

given text description. We can use it to create visual representations of concepts or

generate images for machine learning tasks.

7) Semantic-Image-to-Photo Translation: GANs can translate images from a

semantic representation (such as a label map or a segmentation map) into a realistic

photograph. We can use it to generate synthetic data for training machine learning

models or to visualize concepts more practically.

8) Face Frontal View Generation: GANs can generate frontal views of faces from

images that show the face at an angle. We can use it to improve face recognition

algorithm’s performance or synthesize pictures for use in other applications.

9) Generate New Human Poses: GANs can generate images of people in new

poses, such as difficult or impossible for humans to achieve. It can be used to create

new content or to augment existing image datasets.

10) Photos to Emojis: GANs can be used to convert photographs of people into

emojis, creating a more personalized and expressive form of communication.

11) Photograph Editing: GANs can be used to edit photographs in various ways,

such as changing the background, adding or removing objects, or altering the

appearance of people or animals in the image.

B.Tech–CSE R-20

DeepLearning

12) Face Aging: GANs can be used to generate images of people at different ages,

allowing users to visualize how they might look in the future or to see what theymight

have looked like in the past.

DifferencesBetweenDiscriminativeandGenerativeModels

1) Core Idea

Discriminative models draw boundaries in the data space, while generative

models try to model how data is placed throughout the space. A generative model

explains how the data was generated, while a discriminative model focuses on

predicting the labels of the data.

2) MathematicalIntuition

In mathematical terms, discriminative machine learning trains a model, which

isdonebylearningparametersthatmaximizetheconditional probabilityP(Y|X).On the

other hand, a generative model learns parameters by maximizing the joint probability

of P(X, Y).

3) Applications

Discriminative models recognize existing data, i.e., discriminative modeling

identifies tags and sorts data and can be used to classify data, while Generative

modeling produces something.

Since these models use different approaches to machine learning, both are

suited for specific tasks i.e., Generative models are useful for unsupervised learning

tasks. In contrast, discriminative models are useful for supervised learning tasks.

GANs(Generativeadversarialnetworks)canbethoughtofasa competitionbetween the

generator, which is a component of the generative model, and the discriminator, so

basically, it is generative vs. discriminative model.

4) Outliers

Generativemodelshavemoreimpactonoutliersthandiscriminativemodels.

B.Tech–CSE R-20

DeepLearning

5) ComputationalCost

Discriminative models are computationally cheap as compared to generative

models.

ComparisonBetweenDiscriminativeandGenerative Models:

1) Based on Performance

Generative models need fewer data to train compared with discriminative

models since generative models are more biased as they make stronger

assumptions, i.e., assumption of conditional independence.

2) BasedonMissingData

In general, if we have missing data in our dataset, then Generative modelscan

work with these missing data, while discriminativemodels can’t.This isbecause, in

generative models, we can still estimate the posterior by marginalizing the unseen

variables. However, discriminative models usually require all the features X to be

observed.

3) Basedonthe AccuracyScore

If the assumption of conditional independence violates, then at that time,

generative models are less accurate than discriminative models.

4) Based onApplications

Discriminative models are called “discriminative”since they are useful for

discriminating Y’s label, i.e., target outcome, so they can only solve classification

problems. In contrast, Generative models have more applications besides

classification, such as samplings, Bayes learning, MAP inference, etc.

GenerativeModelsvsDiscriminativeModels:

Machine learning (ML) and Deep Learning (DL) are two of the most exciting

andconstantlychangingfieldsofstudyofthe21stcentury.Usingthese

B.Tech–CSE R-20

DeepLearning

technologies,machinesaregiventheabilitytolearnfrompastdataandpredictor make

decisions from future, unseen data.

The inspiration comes from the human mind, how we use past experiences to

help us make informed decisions in the present and the future. And while there are

already many applications of ML and DL, the future possibilities are endless.

Computers utilize mathematics, algorithms, and data pipelines to draw

meaningful inferences from raw data since they cannot perceive data andinformation

like humans - not yet, at least. There are two ways we can improve a machine’s

efficiency: either get more data or come up with newer or more robust algorithms.

Quintillions of data are generated all over the world almost daily, so getting

fresh data is easy. But in order to work with this gigantic amount of data, we need

new algorithms or we need to scale up existing ones.

Mathematics, especially branches like calculus, probability, statistics, etc., is

the backbone of these algorithms or models. They can be widely divided into two

groups:

1. Discriminativemodels

2. Generativemodels

Mathematically, generative classifiers assume a functional form for P(Y) and

P(X|Y), then generate estimated parameters from the data and use the Bayes’

theorem to calculate P(Y|X) (posterior probability). Meanwhile, discriminative

classifiers assume a functional form of P(Y|X) and estimate the parameters directly

from the provided data.

B.Tech–CSE R-20

DeepLearning

Discriminativemodel

The majority of discriminative/conditional models, are used for supervised

machine learning. They do what they ‘literally’ say, separating the data points into

different classes and learning the boundaries using probability estimates and

maximum likelihood.

Outliers have little to no effect on these models. They are a better choice than

generative models, but this leads to misclassification problems which can be a major

drawback.

Here are some examples and a brief description of the widely used

discriminative models:

1. Logisticregression: Logisticregression can be considered the linearregressionof

classification models. The main idea behind both the algorithms is similar, but while

linear regression is used for predicting a continuous dependent variable, logistic

regression is used to differentiate between two or more classes.

2. Support vector machines: This is a powerful learning algorithm with applicationsin

both regression and classification scenarios. An n-dimensional space containing the

data points is divided into classes by decision boundaries using support vectors. The

best boundary is called a hyperplane.

3. Decision trees: A graphical tree-like model is used to map decisions and their

probable outcomes. It could be thought of as a robust version of If-else statements.

A few other examples are commonly-used neural nets, k-nearest neighbor

(KNN), conditional random field (CRF), random forest, etc.

Generativemodel

As the name suggests, generative models can be used to generate new data

points. These models are usually used in unsupervised machine learning problems.
Generative models go in-depth to model the actual data distribution and learn the
different data points, rather than model just the decision boundary between classes.

These models are prone to outliers, which is their only drawback when

compared to discriminative models. The mathematics behind generative models is
quite intuitive too. The method is not direct like in the case of discriminative models.

B.Tech–CSE R-20

DeepLearning

TocalculateP(Y|X),they firstestimatethepriorprobability P(Y)andthelikelihood
probability P(X|Y) from the data provided.

Putting the values into Bayes’ theorem’s equation, we get an accurate

valuefor P(Y|X).

Someexamplesaswellasadescriptionofgenerativemodelsareasfollows:

1. Bayesian network: Also known as Bayes’ network, this model uses a directed

acyclic graph (DAG) to draw Bayesian inferences over a set of random variables to

calculate probabilities. It has many applications like prediction, anomaly detection,

time series prediction, etc.

2. Autoregressive model: Mainly used for time series modeling, it finds a correlation

between past behaviors to predict future behaviors.

3. Generative adversarial network (GAN): It’s based on deep learning technology

and uses two sub models. The generator model trains and generates new datapoints

and the discriminative model classifies these ‘generated’ data points into real or fake.

SomeotherexamplesincludeNaiveBayes,Markovrandomfield,hiddenMarkov model

(HMM), latent Dirichlet allocation (LDA), etc.

Discriminativevsgenerative:WhichisthebestfitforDeepLearning?

B.Tech–CSE R-20

DeepLearning

Discriminative models divide the data space into classes by learning the

boundaries, whereas generative models understand how the data is embedded into

the space. Both the approaches are widely different, which makes them suited for

specific tasks.

Deep learning has mostly been using supervised machine learning algorithms

like Artificial Neural Networks (ANNs), convolutional neural networks (CNNs), and

Recurrent Neural Networks (RNNs). ANN is the earliest in the trio and leverages

artificial neurons, backpropagation, weights, and biases to identifypatterns based on

the inputs. CNN is mostly used for image recognition and computer vision tasks. It

works by pooling important features from an input image. RNN, which is the latest of

the three, is used in advanced fields like natural language processing, handwriting

recognition, time series analysis, etc.

These arethefieldswherediscriminative modelsareeffective andbetterused for

deep learning as they work well for supervised tasks. Apart from these, deep learning

and neural nets can be used to cluster images based on similarities. Algorithms like

autoencoder, Boltzmann machine, and self-organizing maps are popular

unsupervised deep learning algorithms. They make use of generativemodels for

tasks like exploratory data analysis (EDA) of high dimensional datasets, image

denoising, image compression, anomaly detection and even generating new images.

This Person Does Not Exist - Random Face Generatoris an interesting website that

uses a type of generative model called StyleGAN to create realistic human faces,

even though the people in these images don’t exist!

https://this-person-does-not-exist.com/en

B.Tech–CSE R-20

DeepLearning

UNIT-V

AUTO-ENCODERS: Auto-encoders, Architecture and components of auto-

encoders (encoder and decoder), Training an auto-encoder for data

compression and reconstruction, Relationship between Autoencoders and

GANs, Hybrid Models: Encoder-Decoder GANs.

Auto-encoders:

Autoencoders are a type of deep learning algorithm that are designed to

receive an input and transform it into a different representation. They play an

important part in image construction. Artificial Intelligence encircles a wide range of

technologies and techniques that enable computer systems to solve problems like

Data Compression which is used in computer vision, computer networks, computer

architecture, and many other fields.

Autoencoders areunsupervised neural networksthat use machine learningto

do this compression for us.

What Are Autoencoders?

An autoencoder neural networkis an Unsupervised Machine learningalgorithm

that applies backpropagation, setting the target values to be equal to the inputs.

Autoencoders are used to reduce the size of our inputs into a smaller representation. If

anyone needs the original data, they can reconstruct it from the compressed data.

Similar machine learning algorithm i.e., PCA (Principal Component Analysis) which

does the same task also co-exists.

Autoencoders:ItsEmergence

AutoencodersarepreferredoverPCAbecause:

https://www.edureka.co/blog/neural-network-tutorial/
https://www.edureka.co/blog/what-is-machine-learning/

B.Tech–CSE R-20

DeepLearning

▪ Anautoencodercanlearn non-lineartransformationswitha non-linear

activation function and multiple layers.

▪ It doesn’thave to learndense layers. It can use convolutionallayersto learn

which is better for video, image and series data.

▪ Itismoreefficienttolearnseverallayerswithanautoencoderratherthan learn one

huge transformation with PCA.

▪ Anautoencoderprovidesa representationofeachlayerastheoutput.

▪ Itcanmakeuseof pre-trainedlayers fromanothermodeltoapplytransfer learning

to enhance the encoder/decoder.

ApplicationsofAutoencoders

1) ImageColoring

Autoencoders are used for converting any black and white picture into a

colored image. Depending on what is in the picture, it is possible to tell what thecolor

should be.

2) Featurevariation

It extracts only the required features of an image and generates the output by

removing any noise or unnecessary interruption.

B.Tech–CSE R-20

DeepLearning

3) DimensionalityReduction

The reconstructed image is the same as our input but with reduced

dimensions. It helps in providing the similar image with a reduced pixel value.

4) DenoisingImage

The input seen by the autoencoder is not the raw input but a stochastically

corrupted version. A denoising autoencoder is thus trained to reconstruct the original

input from the noisy version.

B.Tech–CSE R-20

DeepLearning

5) WatermarkRemoval

It is also used for removing watermarks from images or to remove any object while filming a

video or a movie.

ArchitectureofAutoencoders

AnAutoencoderconsistofthreelayers:

1. Encoder

2. Code

3. Decoder

• Encoder:This part of the network compresses the input into a latent space

representation.Theencoderlayer encodes theinputimageasa compressed

representation in a reduced dimension. The compressed imageis the distorted

version of the original image.

• Code:Thispart of the network represents the compressed input which is fed to

the decoder.

B.Tech–CSE R-20

DeepLearning

• Decoder:This layerdecodesthe encoded image back to the original

dimension. The decoded image is a lossy reconstruction of the original image

and it is reconstructed from the latent space representation.

Thelayerbetweentheencoderanddecoder,ie.thecodeisalsoknown as

Bottleneck. This is a well-designed approach to decide which aspects of observed

data are relevant information and what aspects can be discarded. It does this by

balancing two criteria:

• Compactnessofrepresentation,measuredasthecompressibility.

• Itretainssomebehaviourallyrelevant variablesfromtheinput.

Traininganauto-encoderfordatacompressionandreconstruction:

An autoencoder consists of two parts: an encoder network and a decoder

network. The encoder network compresses the input data, while the decodernetwork

reconstructs the compressed data back into its original form. The compressed data,

also known as the bottleneck layer, is typically much smaller than the input data.

The encoder network takes the input data and maps it to a lower-dimensional

representation. This lower-dimensional representation is the compressed data. The

decoder network takes this compressed data and maps it back to the original input

data. The decoder network is essentially the inverse of the encoder network.

The bottleneck layer is the layer in the middle of the autoencoder thatcontains

the compressed data. This layer is much smaller than the input data, which

B.Tech–CSE R-20

DeepLearning

is what allows for compression. The size of the bottleneck layer determines the

amount of compression that can be achieved. Autoencoders differ from other deep

learning architectures, such as convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), in that they do not require labeled data. Autoencoders can

learn the underlying structure of the data without any explicit labels.

Image CompressionwithAutoencoders

There are two types of image compression: lossless and lossy. Lossless

compression methods preserve all of the data in the original image, while lossy

compression methods discard some of the data to achieve higher compressionrates.

Autoencoders can be used for both lossless and lossy compression. Lossless

compression can be achieved by using a bottleneck layer that is the same size asthe

input data. In thiscase, the autoencoderessentiallylearns to encode anddecode the

input data without any loss of information.

Lossy compression can be achieved by using a bottleneck layer that issmaller

than the input data. In this case, the autoencoder learns to discard some of the data

to achieve higher compression rates. The amount of data that is discarded depends

on the size of the bottleneck layer.

Herearesomeexamplesofimagecompressionusingautoencoders:

• A 512×512 color image can be compressed to a 64×64 grayscale image

using an autoencoder with a bottleneck layer of size 64.

• A 256×256 grayscale image can be compressed to a 128×128grayscale

image using an autoencoder with a bottleneck layer of size 128.

The effectiveness of autoencoder-based compression techniques can be

evaluated by comparing the compressed and reconstructed images to the original

images. The most common evaluation metric is the peak signal-to-noise ratio

(PSNR), which measures the amount of noise introduced by the compression

algorithm. Higher PSNR values indicate better compression quality.

B.Tech–CSE R-20

DeepLearning

ImageReconstructionwithAutoencoders

Autoencoders are a type of neural network that can be used for image

compression and reconstruction. The process involves compressing an image into a

smaller representation and then reconstructing it back to its original form. Image

reconstruction is the process of creating an image from compressed data.

Explanationofimagereconstructionfromcompressed data:

The compressed data can be thought of as a compressed version of the

original image. To reconstruct the image, the compressed data is fed through a

decoder network, which expands the data back to its original size. The reconstructed

image will not be identical to the original, but it will be a close approximation.

Howautoencoderscanbeusedforimagereconstruction:

Autoencoders use a loss function to determine how well the reconstructed

image matches the original. The loss function calculates the difference between the

reconstructed image and the original image. The goal of the autoencoder is to

minimize the loss function so that the reconstructed image is as close to the original

as possible.

Examplesofimagereconstructionusingautoencoders:

An example of image reconstruction using autoencoders is the MNISTdataset,

which consists of handwritten digits. The autoencoder is trained on the dataset to

compress and reconstruct the images. Another example is the CIFAR-10 dataset,

which consists of 32×32 color images of objects. The autoencoder can be trained on

this dataset to compress and reconstruct the images.

Autoencoder-basedreconstructiontechniquesefficiencyevaluation:

The effectiveness of autoencoder-based reconstruction techniques can be

evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural

SIMilarityindex(SSIM).PSNRmeasuresthequalityofthereconstructedimageby

B.Tech–CSE R-20

DeepLearning

comparingittotheoriginalimage,whileSSIMmeasuresthestructuralsimilarity between

the reconstructed and original images.

VariationsofAutoencodersforImageCompressionandReconstruction

Autoencoders can be modified and improved for better image compression

and reconstruction. Some of the variations of autoencoders are:

1) Denoisingautoencoders:

Denoising autoencoders are used to remove noise from images. The

autoencoder is trained on noisy images and is trained to reconstruct the original

image from the noisy input.

2) Variationalautoencoders:

Variational autoencoders (VAEs) are a type of autoencoder that learn the

probability distribution of the input data. VAEs are trained to generate new samples

from the learned distribution. This makes VAEs suitable for image generation tasks.

3) Convolutionalautoencoders:

Convolutional autoencoders (CAEs) use convolutional neural networks

(CNNs) for image compression and reconstruction. CNNs are specialized neural

networks that can learn features from images.

Comparisonoftheeffectivenessofdifferenttypesofautoencodersforimage compression &

reconstruction:

The effectiveness of different types of autoencoders for image compression

and reconstruction can be compared using metrics such as PSNR and SSIM. CAEs

are generally more effective for image compression and reconstruction than other

types of autoencoders. VAEs are better suited for image generation tasks.

Real-TimeExamples:

A real-time example of an autoencoder for image compression and

reconstructionisGoogle’sGuetzlialgorithm.Guetzliusesacombinationofa

B.Tech–CSE R-20

DeepLearning

perceptual metric and a psycho-visual model to compress images while maintaining

their quality. Another example is the Deep Image Prior algorithm, which uses a

convolutional neural network to reconstruct images from compressed data.

ApplicationsofAutoencodersforImageCompressionandReconstruction

Autoencoders have become increasingly popular for image compression and

reconstruction tasks due to their ability to learn efficient representations of the input

data. In this, we will explore some of the common applications of autoencoders for

image compression and reconstruction.

1) MedicalImaging:

Autoencoders have shown great promise in medical imaging applicationssuch

as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X- Ray

imaging. The ability of autoencoders to learn feature representations from high-

dimensional data has made them useful for compressing medical images while

preserving diagnostic information.

For example, researchers have developed a deep learning-basedautoencoder

approach for compressing 3D MRI images, which achieved higher

compressionratiosthantraditionalcompressionmethodswhilepreservingdiagnostic

quality. This can have significant implications for improving the storage and

transmission of medical images, especially in resource-limited settings.

2) VideoCompression:

Autoencoders have also been used for video compression, where the goal is

to compress a sequence of images into a compact representation that can be

transmitted or stored efficiently. One example of this is the video codec AV1, which

uses a combination ofautoencodersand traditional compression methods to achieve

higher compression rates while maintaining video quality. The autoencoder

component of the codec is used to learn spatial and temporal features of the video

frames, which are then used to reduce redundancy in the video data.

B.Tech–CSE R-20

DeepLearning

3) AutonomousVehicles:

Autoencoders are also useful for autonomous vehicle applications, where the

goal is to compress high-resolution camera images captured by the vehicle’ssensors

while preserving critical information for navigation and obstacle detection. For

example, researchers have developed an autoencoder-based approach for

compressing images captured by a self-driving car, which achieved highcompression

ratioswhilepreservingtheaccuracyof objectdetectionalgorithms.This can have

significant implications for improving the performance and reliability of autonomous

vehicles, especially in scenarios where high-bandwidth communication is not

available.

4) SocialMediaandWebApplications:

Autoencoders have also been used in social media and web applications,

where the goal is to reduce the size of image files to improve website loading times

and reduce bandwidth usage. For example, Facebook uses an autoencoder-based

approach for compressing images uploaded to their platform, which achieves high

compression ratios while preserving image quality. This has led to faster loading

times for images on the platform and reduced data usage for users.

Comparison of the effectiveness of autoencoder-based compression and

reconstruction techniques for different applications:

The effectiveness of autoencoder-based compression and reconstruction

techniques can vary depending on the application and the specific requirements of

the task. For example, in medical imaging applications, the preservation ofdiagnostic

informationiscritical, while in socialmediaapplications, image qualityand loading times

may be more important. Researchers have compared theeffectiveness of

autoencoder-based compression and reconstruction techniques with traditional

compression methods and have found that autoencoder-based methods often

outperformtraditionalmethodsin termsof compression ratio and image quality.

RelationshipbetweenAutoencodersandGANs:

B.Tech–CSE R-20

DeepLearning

Autoencoders and GANs are both powerful techniques for learning from data

in an unsupervised way, but they have some differences and trade-offs.Autoencoders

are easier to train and more stable, but they tend to produce blurry or distorted

reconstructions or generations. GANs are harder to train and more proneto mode

collapse, where they produce only a few modes of the data distribution, but

theytendtoproducesharperandmorediversegenerations.Dependingonyourgoal and

your data, you might prefer one or the other, or even combine them in a hybrid

model.

Autoencoders are unsupervised models, which means that they are nottrained

on labeled data. Instead, they are trained on unlabeled data and learn to reconstruct

the input data. GANs, on the other hand, are supervised models, which means that

they are trained on labeled data. The generator in a GAN is trained to generate data

that looks like the labeled data, and the discriminator is trained to distinguish

between real and fake data. Autoencoders are typically used for tasks such as image

denoising and compression. GANs are typically used for tasks such as image

generation and translation.

HybridModels:Encoder-DecoderGANs:

HowcanyoucombineGANsandautoencoderstocreatehybridmodelsforvarious tasks?

Generativeadversarialnetworks(GANs)andautoencodersaretwopowerfultypesof
artificial neural networks that can learn from data and generate new samples. But what if
you could combine them to create hybrid models that can perform various tasks, such as
image synthesis, anomaly detection, or domain adaptation.

GANsandautoencoders

GANs are composed of two networks: a generator and a discriminator. The

generator tries to create realistic samples from random noise, while the discriminator

tries to distinguish between real and fake samples. The two networks compete with

each other, improving their skills over time. Autoencoders are composed of two

networks:anencoderandadecoder.Theencodercompressestheinputdataintoa

B.Tech–CSE R-20

DeepLearning

lower-dimensional representation, while the decoder reconstructs the input datafrom

the representation. The goal is to minimize the reconstruction error, while learning

useful features from the data.

Hybridmodels

Hybrid models are models that combine GANs and autoencoders in different

ways, depending on the task and the objective. For example, you can use an

autoencoder as the generator of a GAN, and train it to fool the discriminator, while

also minimizing the reconstruction error. This way, we can generate realistic samples

that are similar to the input data, but also have some variations. Alternatively, youcan

use a GAN as the encoder of an autoencoder, and train it to encode the input data

into a latent space that is compatible with the discriminator. This way, you can learn

ameaningfulrepresentation ofthedatathatcanbeusedfordownstreamtasks, such as

classification or clustering.

Image synthesis

One of the most common tasks for hybrid models is image synthesis, which is

the process of creating new images from existing ones, or from scratch. For example,

you can use a hybrid model to synthesize images of faces, animals, or landscapes, by

using an autoencoder as the generator of a GAN, and feeding it with real images or

random noise. This way, you can create diverse and realistic images that preserve the

attributes of the input data, but also have some variations. You can also use a hybrid

model to synthesize images of different domains, such as converting photos to

paintings, or day to night, by using a GAN as the encoder of an autoencoder, and

feeding it with images from both domains. This way, you can learn a common latent

space that can be used to transfer the style or the attributes of one domain to

another.

B.Tech–CSE R-20

DeepLearning

Anomalydetection

Another task for hybrid models is anomaly detection, which is the process of

identifying abnormal or unusual patterns in the data, such as outliers, frauds, or

defects. For example, you can use a hybrid model to detect anomalies in images,such

as damaged products, or medical conditions, by using an autoencoder as the

generator of a GAN, and feeding it with normal images. This way, you can train the

autoencoder to reconstruct normal images well, but fail to reconstruct abnormal

images.

Then, we can use the reconstruction error or the discriminator score as a

measure of anomaly. You can also use a hybrid model to detect anomalies in time

series, such as sensor readings, or financial transactions, by using a GAN as the

encoder ofan autoencoder, and feeding it with normal time series. This way, you can

train the GAN to encode normal time series well, but fail to encode abnormal time

series. Then, we can use the latent space or the discriminator score as a measure of

anomaly.

Domainadaptation

A third task for hybrid models is domain adaptation, which is the process of

adapting a model trained on one domain to work on another domain, without

requiring labeled data from the target domain. For example, you can use a hybrid

model to adapt a model trained on images of handwritten digits to work on images

of handwritten letters, by using a GAN as the encoder of an autoencoder, andfeeding

it with images from both domains. This way, you can train the GAN toencode both

domains into a shared latent space that is invariant to the domain differences.

